6. Exercise sheet for Algorithmen der Numerischen Mathematik

Exercise 17: (Computations with Hessenberg)
a) Transform the matrix

$$
\left(\begin{array}{ccc}
2 & 7 & 3 \\
3 & 4 & 1 \\
4 & 2 & -2
\end{array}\right)
$$

through Householder-transformations to a Hessenberg matrix.
b) Let

$$
A=\left(\begin{array}{ccc}
12 & -2 & 9 \\
-6 & 0 & -3 \\
7 & -7 & 8
\end{array}\right) \quad \text { and } \quad Q=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & * & * \\
1 & * & * \\
0 & * & *
\end{array}\right) \in \mathbb{R}^{3}
$$

with $Q^{T} Q=I$ and $Q^{T} A Q=H$ in Hessenberg form. Compute H and Q.

Exercise 18:

Give an algorithm, which computes the QR-decomposition of a symmetric, tridiagonal matrix of dimension n in $O(n)$.
Exercise 19: (Francis QR-step)
In the algorithm for the computation of complex eigenvalues of real matrices, presented in the lecture, one uses the first column of the matrix M_{k}.
a) Give an algorithm that computes $M_{k} e_{1}$ in as few operations as possible.
b) Then give an algorithm that computes the reflection $Q\left(M_{k} e_{1}\right)=\alpha e_{1}$ with a Householder matrix Q as efficiently as possible.

Programming exercise 5:

Implement the algorithm of exercise 18 and test it for at least one matrix.

Solutions are discussed on Wednesday 07.06.2023.

Contact person: Dominik Sulz - when you have questions just come to my office (C3P16) or write me an email.

