1. Exercise sheet for Algorithmen der Numerischen Mathematik

Exercise 1: (Sine-/Cosine series)

Proof that the Fourier series of a continuous 2π -periodic function $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}$ admits an equivalent representation of the form

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt))$$

Write a_n, b_n as a function of c_n . How can one calculate a_n and b_n from f(t)? What happens for even and odd functions (f(t) = f(-t) and f(t) = -f(-t))?

Exercise 2: Proof the convolution theorem:

If the complex sequences $c = (c_n)_{n \in \mathbb{Z}}$ and $d = (d_n)_{n \in \mathbb{Z}}$ are absolutely summable, then the convolution c * d is absolutely summable and it holds

$$\widehat{(c * d)}(t) = \hat{c}(t)\hat{d}(t)$$
 for all $t \in \mathbb{R}$.

Exercise 3: (Cesàro-sums)

For a sequence $(a_n)_{n \in \mathbb{N}}$ we define the *Cesàro-sum* via

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

Proof the following: Convergence of the sequence $(a_n)_{n\in\mathbb{N}}$ to an *a* implies convergence of the sequence $(s_n)_{n\in\mathbb{N}}$ to *a*, but convergence of $(s_n)_{n\in\mathbb{N}}$ does not imply convergence of $(a_n)_{n\in\mathbb{N}}$.

Exercise 4:

- (a) Let $x = (x_0, x_1, \dots, x_{N-1}) \in \mathbb{R}^N$ (thus x_j real). Proof: $\hat{x}_{-k} = \overline{\hat{x}_k}$ for $k \in \mathbb{Z}$, where \hat{x} is the discrete Fourier-transform of x.
- (b) If $x \in \mathbb{C}^N$ is a even sequence (i.e., $x_{-k} = x_k$ for all $k \in \mathbb{Z}$) then its Fourier-transform \hat{x} is even. If x is odd (i.e., $x_{-k} = -x_k$ for all $k \in \mathbb{Z}$) then its Fourier-transform \hat{x} is odd.

Solutions are discussed either Wednesday 26.04.2023 or Friday 28.04.2023.

Contact person: Dominik Sulz - when you have questions just come to my office (C3P16) or write me an email.