1. Exercise sheet for Algorithmen der Numerischen Mathematik

Exercise 1: (Sine-/Cosine series)

Proof that the Fourier series of a continuous 2π-periodic function $f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{\mathrm{i} n t}$ admits an equivalent representation of the form

$$
f(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right)
$$

Write a_{n}, b_{n} as a function of c_{n}. How can one calculate a_{n} and b_{n} from $f(t)$? What happens for even and odd functions $(f(t)=f(-t)$ and $f(t)=-f(-t))$?
Exercise 2: Proof the convolution theorem:
If the complex sequences $c=\left(c_{n}\right)_{n \in \mathbb{Z}}$ and $d=\left(d_{n}\right)_{n \in \mathbb{Z}}$ are absolutely summable, then the convolution $c * d$ is absolutely summable and it holds

$$
\widehat{(c * d)}(t)=\hat{c}(t) \hat{d}(t) \quad \text { for all } t \in \mathbb{R}
$$

Exercise 3: (Cesàro-sums)
For a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ we define the Cesàro-sum via

$$
s_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

Proof the following: Convergence of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ to an a implies convergence of the sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ to a, but convergence of $\left(s_{n}\right)_{n \in \mathbb{N}}$ does not imply convergence of $\left(a_{n}\right)_{n \in \mathbb{N}}$.

Exercise 4:

(a) Let $x=\left(x_{0}, x_{1}, \ldots, x_{N-1}\right) \in \mathbb{R}^{N}$ (thus x_{j} real). Proof: $\hat{x}_{-k}=\overline{\hat{x}_{k}}$ for $k \in \mathbb{Z}$, where \hat{x} is the discrete Fourier-transform of x.
(b) If $x \in \mathbb{C}^{N}$ is a even sequence (i.e., $x_{-k}=x_{k}$ for all $k \in \mathbb{Z}$) then its Fourier-transform \hat{x} is even. If x is odd (i.e., $x_{-k}=-x_{k}$ for all $k \in \mathbb{Z}$) then its Fourier-transform \hat{x} is odd.

Solutions are discussed either Wednesday 26.04.2023 or Friday 28.04.2023.
Contact person: Dominik Sulz - when you have questions just come to my office (C3P16) or write me an email.

