1. Übungsblatt zu Algorithmen der Numerischen Mathematik

Aufgabe 1: (Sinus-/Cosinusreihe)

Zeigen Sie, dass die Fourierreihe einer stetigen, 2π -periodischen Funktion, $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}$ die äquivalente Darstellung

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt))$$

erlaubt. Geben Sie a_n, b_n als Funktion der c_n an. Wie lassen sich a_n und b_n aus f(t) berechnen? Was ergibt sich für gerade und ungerade Funktionen (f(t) = f(-t)) bzw. f(t) = -f(-t)?

Aufgabe 2: (Fourierreihen)

a) Bestimmen Sie die Fourierreihe der Funktion

$$g: [-\pi, \pi) \to \mathbb{R}, \ g(t) = t$$

mit 2π -periodischer Fortsetzung. Konvergiert die Reihe gleichmäßig?

b) Führen Sie die gleichen Untersuchungen an der Funktion

$$h: [-\pi, \pi) \to \mathbb{R}, h(t) = |t|$$

mit 2π -periodischer Fortsetzung durch.

Aufgabe 3: (Cesàro-Summen)

Für eine Folge $(a_n)_{n\in\mathbb{N}}$ definieren wir die $Ces\`{a}ro-Summe$

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

Zeigen Sie: Aus der Konvergenz der Folge $(a_n)_{n\in\mathbb{N}}$ gegen ein a folgt Konvergenz der Folge $(s_n)_{n\in\mathbb{N}}$ gegen a, Konvergenz der Folge $(s_n)_{n\in\mathbb{N}}$ impliziert aber nicht die Konvergenz von $(a_n)_{n\in\mathbb{N}}$.

Programmieraufgabe 1: Implementieren Sie die schnelle Fourier-Transformation (ohne Verwendung von fft und ifft). Sie dürfen annehmen, dass die Länge des Eingabevektors eine Zweierpotenz ist.

<u>Hinweis:</u> Implementieren Sie die schnelle Fourier-Transformation rekursiv (d.h. Ihre Funktion ruft sich selbst wieder auf).

Zusatzaufgabe: (Terminproblem)

Sprechen Sie mit Ihrem Tutor einen Ausweichtermin für die Übung am 01.05. ab.

<u>Hinweis:</u> Für diese Aufgabe können leider keine Kreuze vergeben werden.

Besprechung in den Übungen am 24.04.2015.