2. Übungsblatt zur Numerik

Aufgabe 4:

 $\overline{\text{Sei } \|\cdot\| \text{ eine }}$ (Vektor-)Norm auf \mathbb{R}^n , und $A \in \mathbb{R}^{n \times n}$ eine $(n \times n)$ -Matrix. Wir definieren

$$|||A||| := \sup_{0 \neq x \in \mathbb{R}^n} \frac{||Ax||}{||x||}.$$

- (a) Zeigen Sie für die Einheitsmatrix $I \in \mathbb{R}^{n \times n}$, dass |||I||| = 1 ist.
- (b) Zeigen Sie für zwei Matrizen $A,B\in\mathbb{R}^{n\times n},$ dass $|||AB|||\leq |||A|||\,|||B|||.$
- (c) Zeigen Sie, dass $|||A||| = \sup_{\|x\|=1} \|Ax\|$.
- (d) Zeigen Sie, dass für jedes $x \in \mathbb{R}^n$ die Abschätzung $||Ax|| \le |||A||| ||x|||$ gilt.

Aufgabe 5:

 $\overline{\text{Sei }A \in \mathbb{R}^{m \times n}}, m, n \in \mathbb{N}$. Betrachte die Vektornormen $\|\cdot\|_1, \|\cdot\|_2$ und $\|\cdot\|_{\infty}$ sowie die entsprechenden induzierten (Operator-)Matrixnormen, bezeichnet mit $\|A\|_1, \|A\|_2$ und $\|A\|_{\infty}$.

- (a) $||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$ (maximale Spaltenbetragssumme)
- (b) $||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$ (maximale Zeilenbetragssumme)
- (c) $\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{m} \|A\|_{\infty}$

Aufgabe 6:

 $\overline{\text{Sei } A \in \mathbb{R}^{n \times n}}$, $n \in \mathbb{N}$, mit $A = \frac{1}{h}$ tridiag(1, 4, 1) für $h \neq 0$. Zeigen Sie, dass $\text{cond}_{\infty}(A) \leq 3$ unabhängig von der Dimension n der Matrix A ist.

Hinweis: Verwenden Sie die Zerlegung $A = \frac{4}{h}(I+N)$ und betrachten Sie die Neumann'sche Reihe

$$(I+N)^{-1} = \sum_{k=0}^{\infty} (-N)^k,$$

um $||A^{-1}||_{\infty}$ abzuschätzen.