1. Übungsblatt zur Numerik

Aufgabe 1: (Landau-Notation)

Für (reelle) Funktionen f und g schreiben wir $f = \mathcal{O}(g)$ für $x \to a$, $(a \in \mathbb{R} \cup \{\pm \infty\})$, falls es eine Umgebung U von a und eine Konstante $C \in \mathbb{R}$ gibt, so dass

$$|f(x)| \le C|g(x)|$$
 für alle $x \in U$

(oder etwas präziser, falls $\limsup_{x\to a} \frac{|f(x)|}{|g(x)|} < \infty$). Anschaulich bedeutet dies, dass die Funktion f in einer Umgebung von a nicht schneller wächst als die Funktion g.

Gegeben seien die Funktionen

$$x^3$$
, $\log(x)$, 2^x , x^2 , $x^3 + 1000x^2$, e^x .

Vergleichen Sie das Wachstum dieser Funktionen für $x \to \infty$ und $x \to 0$ mit Hilfe der oben beschriebenen \mathcal{O} -Notation.

Aufgabe 2:

Gegeben seien Funktionen $\varphi_i: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ für $i \in \{1, 2, 3\}$ durch

$$\varphi_1(x,y) := x + y, \quad \varphi_2(x,y) := x \cdot y, \quad \varphi_3(x,y) := \frac{x}{y}.$$

Untersuchen Sie den relativen Fehler

$$\operatorname{err}_{\operatorname{rel}}(\varphi_i) = \left| \frac{\varphi_i(\tilde{x}, \tilde{y}) - \varphi_i(x, y)}{\varphi_i(x, y)} \right|, \quad i \in \{1, 2, 3\}$$

für die Näherungswerte

$$\tilde{x} := x(1 + \varepsilon_x), \quad \tilde{y} := y(1 + \varepsilon_y).$$

Für welche Konstellationen von x und y werden die Eingabefehler ε_x und ε_y jeweils verstärkt? Welche der Grundrechenarten Addition, Multiplikation und Division sind damit gut gestellt und daher beim Rechnen mit dem Computer stabil gegenüber Rundungsfehlern?

Aufgabe 3:

Fixiere $n \in \mathbb{N}$ und betrachte eine beliebige Vektornorm $\|\cdot\|$ auf \mathbb{R}^n . Betrachte nun den Raum der reellen $(n \times n)$ -Matrizen. Zeigen Sie, dass durch

$$|||A||| := \sup_{0 \neq x \in \mathbb{R}^n} \frac{||Ax||}{||x||} \quad \forall A \in \mathbb{R}^{n \times n}$$

eine Norm auf dem Raum der reellen $(n \times n)$ -Matrizen definiert ist.

Besprechung der Übungsaufgaben am 22.10.2025