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Lecture 3: Advanced Exercises – Solutions

This sheet provides detailed solutions and explanations to the key concepts of

Brownian motion, stochastic calculus, the Itô integral, and stochastic differential

equations.

1 Exercise 1: Simulation of Brownian Motion

A standard Brownian motion (Wt)t≥0 has independent, stationary increments with W0 =

0 and Wt+h −Wt ∼ N(0, h). To simulate a path on [0, T ] with step size h, we proceed as

follows:

• Set N = ⌈T/h⌉ and times tk = kh for k = 0, 1, . . . , N , with tN = T .

• Initialize W (0) = 0.

• For k = 1 to N , generate independent standard normal Zk ∼ N(0, 1) and set

W (tk) = W (tk−1) +
√
hZk,

since W (tk)−W (tk−1) ∼ N(0, h) by stationarity of increments.

• The vector (W (t0),W (t1), . . . ,W (tN)) is then a discrete approximation of a Wiener

path.

In pseudocode (e.g. Python-like) one could write:
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W[0] = 0

for k in 1...N:

Z = standard_normal()

W[k] = W[k-1] + sqrt(h) * Z

This generates one sample path of Brownian motion on [0, T ] with incrementsW (tk)−
W (tk−1) ∼ N(0, h).

2 Exercise 2: Total Variation

The total variation of a (continuous) function f on [a, b] is defined by

Va,b(f) = sup
P

n∑
i=1

|f(ti)− f(ti−1)|,

where the supremum is over all partitions a = t0 < t1 < · · · < tn = b. We show that for

a Brownian path t 7→ Wt, Va,b(W ) is infinite almost surely.

Fix an interval [a, b] and consider a uniform partition with ti = a + i(b − a)/N . Let

∆Wi = W (ti)−W (ti−1). Then one uses the identity

N∑
i=1

∆W 2
i ≤

(
max

i
|∆Wi|

) N∑
i=1

|∆Wi|.

As the mesh of the partition goes to 0, continuity of W implies maxi |∆Wi| → 0 almost

surely. On the other hand, the left side
∑

∆W 2
i has expected value b − a (independent

of N) and in fact converges to b − a in L2 (see Exercise 3 below). Hence for large N ,

with high probability
∑

∆W 2
i is bounded away from 0, forcing

∑
|∆Wi| to grow without

bound as N → ∞. Formally, as N → ∞ we have
∑

|∆Wi| → ∞ almost surely. Thus

the total variation is infinite with probability one.

For example, a more detailed argument yields that Va,b(W ) = ∞ almost surely. In-

tuitively, Brownian paths are nowhere differentiable and oscillate infinitely often, so the

accumulated absolute increments diverge.

3 Exercise 3: Quadratic Variation

Let 0 = t0 < t1 < · · · < tN = T be any partition of [0, T ] with mesh maxi(ti − ti−1) → 0.

Define the quadratic variation sum

QN =
N∑
i=1

(Wti −Wti−1
)2.

We show QN → T in L2, i.e. E[(QN − T )2] → 0.
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First, by independent increments and E[(Wti −Wti−1
)2] = ti − ti−1 (since Var(Wti −

Wti−1
) = ti − ti−1), we have

E[QN ] =
N∑
i=1

E[(Wti −Wti−1
)2] =

N∑
i=1

(ti − ti−1) = T.

Thus QN is an unbiased estimator of T . Next, compute the variance:

Var(QN) = E[(QN − E[QN ])
2] = E

( N∑
i=1

(Wti −Wti−1
)2 − (ti − ti−1)

)2
 .

Because the increments are independent and Var((Wti − Wti−1
)2) = 2(ti − ti−1)

2 (using

that Wti −Wti−1
∼ N(0, ti − ti−1) has fourth moment 3(ti − ti−1)

2), one finds

Var(QN) =
N∑
i=1

2(ti − ti−1)
2 ≤ 2max

i
(ti − ti−1)

N∑
i=1

(ti − ti−1) = 2T max
i

(ti − ti−1).

Since the mesh maxi(ti− ti−1) → 0, it follows that Var(QN) → 0. Hence E[(QN −T )2] =

Var(QN) → 0. This implies QN → T in L2 (and also in probability).

In summary, as the partition is refined, the sum of squared increments converges in

mean square to T , the length of the interval. This shows Brownian motion has quadratic

variation T over [0, T ].

4 Exercise 4: Covariance Function

For a standard Brownian motion with W0 = 0, we compute the covariance E[WsWt]

for s, t ≥ 0. Without loss of generality assume s ≤ t. Then Wt = Ws + (Wt − Ws),

where Wt − Ws is independent of σ(Wu : u ≤ s) and has mean 0. Using linearity and

independence,

E[WsWt] = E
[
Ws(Ws + (Wt −Ws))

]
= E[W 2

s ] + E[Ws]E[Wt −Ws] = E[W 2
s ] + 0.

Since Ws ∼ N(0, s), E[W 2
s ] = Var(Ws) = s. Hence E[WsWt] = s. By symmetry, if t ≤ s

one finds E[WsWt] = t. In either case,

E[WsWt] = min(s, t) .

This is the well-known covariance function of Brownian motion.
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5 Exercise 5: Markov Property

A stochastic process is Markov if the conditional distribution of the future, given the

present state, depends only on that present state and not on the past history. For

Brownian motion, we fix 0 ≤ s < t and let Fs be the σ-algebra generated by {Wu : 0 ≤
u ≤ s} (the “past up to time s”). The Markov property in this context means Wt−Ws is

independent of Fs. But this is true by the independent increment property of Brownian

motion: disjoint increments are independent. More precisely, {Ws+u − Ws : u ≥ 0} is

a Brownian motion independent of Fs, hence the increment Wt −Ws is independent of

what happened before time s. Equivalently, for any bounded measurable function g,

E
[
g(Wt) | Fs

]
= E

[
g(Ws + (Wt −Ws)) | Fs

]
= E[g(Ws + Z)]

∣∣∣
Z∼N(0,t−s)

,

which depends only on Ws, not on earlier history. This establishes the Markov property

of Brownian motion.

6 Exercise 6: Distribution of Increments

Let 0 ≤ s < t. By the stationary increments property, the distribution ofWt−Ws depends

only on t− s and is the same as that of Wt−s −W0 = Wt−s. Since Wt−s ∼ N(0, t− s) by

definition of standard Brownian motion, it follows that

Wt −Ws ∼ N(0, t− s).

Moreover, if we have two non-overlapping intervals [s1, t1] and [s2, t2] with t1 ≤ s2, then

(Wt1−Ws1) and (Wt2−Ws2) are increments over disjoint time sets and so are independent

by the independent increment property. Thus non-overlapping increments are indepen-

dent. In summary, Brownian motion has Gaussian increments N(0, t− s) over [s, t] and

these increments are independent over disjoint intervals.

7 Exercise 7: Itô Isometry for Elementary Functions

Let ϕ be an elementary (simple) adapted process on [0, T ], meaning there is a partition

0 = t0 < t1 < · · · < tn = T and ϕ(t) = ϕk for tk−1 < t ≤ tk, where each ϕk is

Ftk−1
-measurable. The Itô integral is defined by

∫ T

0

ϕ(t) dWt =
n∑

k=1

ϕk

(
Wtk −Wtk−1

)
.
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We compute its second moment. Since E[Wtk −Wtk−1
] = 0 and different increments are

independent, the cross terms drop out. Specifically,

E
[( ∫ T

0

ϕ(t) dWt

)2]
= E

[( n∑
k=1

ϕk∆Wk

)2]
=

n∑
k=1

E[ϕ2
k(∆Wk)

2] + 2
∑
k<ℓ

E[ϕkϕℓ∆Wk∆Wℓ].

For k < ℓ, ∆Wk = Wtk − Wtk−1
and ∆Wℓ = Wtℓ − Wtℓ−1

are independent, and ϕk is

Ftk−1
-measurable (hence independent of ∆Wℓ). Thus

E[ϕkϕℓ∆Wk∆Wℓ] = E[ϕkϕℓ]E(∆Wk)E(∆Wℓ) = 0.

So only the diagonal terms remain. Also ∆Wk ∼ N(0, tk − tk−1) independent of ϕk, so

E[ϕ2
k(∆Wk)

2] = E
[
ϕ2
kE((∆Wk)

2 | ϕk)
]
= E

[
ϕ2
k(tk − tk−1)

]
.

Hence

E
[( ∫ T

0

ϕ(t) dWt

)2]
=

n∑
k=1

E[ϕ2
k](tk − tk−1) = E

[ n∑
k=1

ϕ2
k(tk − tk−1)

]
= E

[ ∫ T

0

ϕ(t)2 dt
]
.

This is the Itô isometry for elementary ϕ:

E
[( ∫ T

0

ϕ dW
)2]

= E
[ ∫ T

0

ϕ(t)2 dt
]
.

8 Exercise 8: Itô Integral
∫ t

0 W (s) dW (s)

We compute the Itô integral of W (s) with respect to W (s). By definition, for a partition

0 = t0 < · · · < tn = t, the Riemann-sum approximation is

In =
n∑

k=1

W (tk−1)
(
W (tk)−W (tk−1)

)
.

Observe the algebraic identity for each increment:

W (tk)
2 −W (tk−1)

2 = (W (tk)−W (tk−1))(W (tk) +W (tk−1)).

Rearrange to express W (tk−1)(W (tk)−W (tk−1)):

W (tk−1)(W (tk)−W (tk−1)) =
1

2

(
W (tk)

2 −W (tk−1)
2 − (W (tk)−W (tk−1))

2
)
.
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Summing over k = 1, . . . , n gives

In =
1

2

(
W (tn)

2 −W (t0)
2 −

n∑
k=1

(W (tk)−W (tk−1))
2

)
.

Since W (0) = 0, W (tn) = W (t), and by Exercise 3
∑n

k=1(W (tk)−W (tk−1))
2 → t in mean

square as the mesh → 0. Hence in the limit∫ t

0

W (s) dW (s) = lim
n→∞

In =
1

2

(
W (t)2 − t

)
.

Therefore ∫ t

0

W (s) dW (s) =
1

2
W (t)2 − 1

2
t.

This is the classical result: the Itô integral of W against itself equals (W (t)2 − t)/2.

9 Exercise 9: Itô vs Riemann–Stieltjes Integral

Let v : [0, t] → R be a deterministic C1 function with v(0) = 0. Then the Rie-

mann–Stieltjes integral
∫ t

0
v(s) dv(s) coincides with the ordinary integral

∫ t

0
v(s)v′(s) ds,

since dv(s) = v′(s)ds. Hence by the fundamental theorem of calculus,∫ t

0

v(s) dv(s) =

∫ t

0

v(s)v′(s) ds =
1

2
v(t)2 − 1

2
v(0)2 =

1

2
v(t)2.

In contrast, for Brownian motion we found in Exercise 8 that∫ t

0

W (s) dW (s) =
1

2
W (t)2 − 1

2
t,

which has the extra drift term −1
2
t. The reason is that Brownian motion has nonzero

quadratic variation: heuristically (dW )2 = dt, whereas for a smooth function (dv)2 =

0. In other words, the second-order Itô correction term appears only in the stochastic

case. The extra −1
2
t arises from the term 1

2
Fxx(W ) (dW )2 in Itô’s formula, reflecting the

randomness of W (no such term appears for deterministic v).

10 Exercise 10: Martingale Property

A stochastic process (Xt)t≥0 is a martingale with respect to a filtration (Ft) if E[|Xt|] < ∞
and

E[Xt | Fs] = Xs, for all s < t.
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For Brownian motion, take Fs = σ{Wu : 0 ≤ u ≤ s}. We check

E[Wt | Fs].

Using Wt = Ws + (Wt −Ws), and the fact that Ws is Fs-measurable while the increment

Wt −Ws is independent of Fs and has mean 0, we obtain:

E[Wt | Fs] = E[Ws + (Wt −Ws) | Fs] = Ws + E[Wt −Ws] = Ws.

Thus E[Wt | Fs] = Ws for all s ≤ t, and Wt has finite variance, so (Wt) is a martingale

with respect to its natural filtration.

11 Exercise 11: Adapted Processes

A stochastic process X = (Xt)t≥0 is said to be adapted to a filtration (Ft)t≥0 if for each

time t, the random variable Xt is Ft-measurable. Informally, this means that Xt depends

only on information available up to time t (it is non-anticipative).

• Example of adapted process: Any process with its own natural filtration is

adapted to that filtration. For instance, Brownian motion Wt is adapted to its

natural filtration Ft = σ{Ws : 0 ≤ s ≤ t}, since Wt is by definition measurable

w.r.t. Ft. More concretely, the process Xt = W 2
t is also adapted, because its value

at time t is determined by Wt (which is known at time t).

• Non-example: Consider a process Yt = WT for a fixed T > t. At time t, Yt

depends on the future value WT which is not determined by Ft (it is independent

of Ft). Hence Yt is not Ft-measurable, and (Yt) is not adapted to the Brownian

filtration. In general, any process that “looks into the future” (depends on Ws for

s > t) is not adapted.

12 Exercise 12: Linearity and Zero Mean of the Itô

Integral

Let u(t) and v(t) be adapted processes on [0, T ] and c be a constant. By the linearity of

the Riemann sums defining the Itô integral, one readily shows∫ T

0

(c u(t) + v(t)) dWt = c

∫ T

0

u(t) dWt +

∫ T

0

v(t) dWt.
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Thus the Itô integral is a linear operator in the integrand. Taking expectations and using

independence of increments shows immediately that

E

[∫ T

0

u(t) dWt

]
= 0,

for any adapted u. Indeed, for an elementary integrand u(t) = uk on each interval,

the expectation E[uk(Wtk − Wtk−1
)] = ukE[Wtk − Wtk−1

] = 0. Passing to limits gives

E
[∫ T

0
u dW

]
= 0. Hence the Itô integral has zero mean.

13 Exercise 13: Geometric Brownian Motion

The stochastic differential equation for geometric Brownian motion is

dSt = µSt dt+ σSt dWt, S0 given.

To solve it, apply Itô’s formula to Xt = lnSt. Note that

d(lnSt) =
1

St

dSt −
1

2

1

S2
t

(dSt)
2.

Since dSt = µStdt+ σStdWt, we have (dSt)
2 = σ2S2

t dt. Substituting,

d(lnSt) =
1

St

(µStdt+ σStdWt)−
1

2

1

S2
t

(σ2S2
t dt) = (µ− 1

2
σ2) dt+ σ dWt.

Integrate from 0 to t to obtain

lnSt = lnS0 +
(
µ− 1

2
σ2
)
t+ σWt.

Exponentiating yields the explicit solution:

St = S0 exp
(
(µ− 1

2
σ2)t+ σWt

)
.

Thus St is log-normally distributed with this mean and volatility structure.

14 Exercise 14: Itô Formula

Let Xt satisfy the SDE

dXt = f(t,Xt) dt+ g(t,Xt) dWt,

and let F (t, x) be a C1,2-function (C1 in t and C2 in x). Itô’s formula states that

dF (t,Xt) = Ft(t,Xt) dt+ Fx(t,Xt) dXt +
1
2
Fxx(t,Xt) (dXt)

2.
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Substitute dXt = f dt + g dWt. Recall that (dWt)
2 = dt in Itô calculus and (dt)2 =

dt dWt = 0. Hence

(dXt)
2 = f(t,Xt)

2(dt)2 + 2fg dt dWt + g(t,Xt)
2(dWt)

2 = g(t,Xt)
2 dt.

Plugging in gives the celebrated Itô formula:

dF (t,Xt) =
(
Ft + f Fx +

1
2
g2 Fxx

)
(t,Xt) dt+ g(t,Xt)Fx(t,Xt) dWt.

In expanded form:

dF (t,Xt) =
∂F

∂t
(t,Xt) dt+

∂F

∂x
(t,Xt)f(t,Xt) dt

+
1

2

∂2F

∂x2
(t,Xt)g(t,Xt)

2 dt+
∂F

∂x
(t,Xt)g(t,Xt) dWt.

The crucial second-order term 1
2
g2Fxx dt has no analog in ordinary calculus. It arises

because (dWt)
2 = dt rather than 0. In applications, this term (often called the Itô

correction) captures the effect of Brownian motion’s quadratic variation on the evolution

of F (t,Xt).

15 Exercise 15: Itô Formula Example (F (x) = x4)

Let Xt = Wt and F (x) = x4. Apply Itô’s formula with Fx = 4x3, Fxx = 12x2, and no

explicit time dependence:

d(W 4
t ) = 4W 3

t dWt +
1

2
· 12W 2

t (dWt)
2 = 4W 3

t dWt + 6W 2
t dt.

Equivalently,

W 4
t = W 4

0 +

∫ t

0

6W 2
s ds+

∫ t

0

4W 3
s dWs.

Since W0 = 0, the first term vanishes. Taking expectations and using E[
∫ t

0
W 3

s dWs] = 0

(by the martingale property of the Itô integral), we get

E[W 4
t ] = E

[∫ t

0

6W 2
s ds

]
= 6

∫ t

0

E[W 2
s ] ds.

But E[W 2
s ] = s (since Ws ∼ N(0, s)), so

E[W 4
t ] = 6

∫ t

0

s ds = 3t2.

This matches the known moment of the Gaussian distribution: in fact one can verify

from the general formula E[W 2n
t ] = (2n)!

n!2n
tn that for n = 2, E[W 4

t ] = 3t2, confirming our
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calculation.
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