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Today’s Agenda

1. Risk-neutral valuation and its motivation.

2. The Black–Scholes PDE and discounted expectations.

3. Equivalent martingale measures.

4. The Feynman–Kac theorem and its application to Black–Scholes.

5. Interpretation and implications for option pricing.

6. Numerical methods for stochastic differential equations.

1. Risk-neutral valuation and equivalent martingale
measures

In Section 1.5, we have seen that in the simplified two-scenario model, the value of
an option can be priced by replication. The same strategy was applied to the refined
model in the previous section. In the simple situation considered in 1.5, the value of an
option turned out to be the discounted expectation of the payoff under the risk-neutral
probability. In this subsection, we will see that this is also true for the refined model
from Section 3.2.

Theorem 3.4.1 (Option price as discounted expectation)

If V (t, S) is the solution of the Black–Scholes equation

∂tV (t, S) + σ2

2 S
2∂2

SV (t, S) + rS∂SV (t, S) − rV (t, S) = 0 t ∈ [0, T ], S > 0
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V (T, S) = ψ(S)

with payoff function ψ(S), then

V (t⋆, S⋆) = e−r(T −t⋆)
∫ ∞

0
ψ(x)ϕ(x; ξ, β) dx (3.7)

for all t⋆ ∈ [0, T ] and S⋆ > 0. The function ϕ is the density of the log-normal
distribution (cf. Definition 3.1.2) with parameters

ξ = lnS⋆ +
(
r − σ2

2

)
(T − t⋆), β = σ

√
T − t⋆. (3.8)

The assertion can be shown by showing that the above representation coincides with
the Black–Scholes formulas for puts and calls. Such a proof, however, involves several
changes of variables in the integral representations and rather tedious calculations. We
give a shorter and more elegant proof:

Proof.

Step 1: In our derivation of the Black–Scholes model, we have assumed that

dSt = µStdt+ σStdWt,

i.e., that the price of the underlying is a geometric Brownian motion with drift µSt; cf.
(3.1). It turned out, however, that the parameter µ does not appear in the Black–Scholes
equation. Hence, we can choose µ = r and consider the SDE

dŜt = rŜtdt+ σŜtdWt, t ∈ [t⋆, T ]

with initial condition
Ŝt⋆ = S⋆

as a model for the stock price.
Step 2: The function u(t, S) := er(T −t)V (t, S) solves the PDE

∂tu(t, S) + σ2

2 S
2∂2

Su(t, S) + rS∂Su(t, S) = 0, t ∈ [0, T ]
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because

∂tu(t, S) + σ2

2 S
2∂2

Su(t, S) + rS∂Su(t, S)

= −rer(T −t)V (t, S) + er(T −t)∂tV (t, S)

+ σ2

2 S
2er(T −t)∂2

SV (t, S) + rSer(T −t)∂SV (t, S)

= er(T −t)
(

−rV (t, S) + ∂tV (t, S) + σ2

2 S
2∂2

SV (t, S) + rS∂SV (t, S)
)

= 0 (by Black–Scholes equation)

Moreover, u satisfies the terminal condition

u(T, S) = V (T, S) = ψ(S).

Step 3: Applying the Feynman–Kac formula (cf. 2.6) with f(t, S) = rS and g(t, S) =
σS yields

E
(
ψ(ŜT )

)
= u(t⋆, S⋆) = er(T −t⋆)V (t⋆, S⋆)

and thus
V (t⋆, S⋆) = e−r(T −t⋆)E

(
ψ(ŜT )

)
.

We know that ŜT is log-normal, i.e.,

E
(
ψ(ŜT )

)
=
∫ ∞

0
ψ(x)ϕ(x; ξ, β) dx

with ϕ as above.

Interpretation

We know from Section 3.1 that

E
(
ŜT

)
=
∫ ∞

0
xϕ(x; ξ, β) dx

= exp
(
ξ + β2

2

)

= exp
(

lnS⋆ +
(
r − σ2

2

)
(T − t⋆) + 1

2

(
σ
√
T − t⋆

)2
)

= exp (lnS⋆ + r(T − t⋆))
= S⋆ exp (r(T − t⋆))

This means that for µ = r the expected value of the stock is exactly the money
obtained by investing S⋆ into a bond at time t⋆ and waiting until T − t⋆. Hence, the log-
normal distribution with parameters (3.8) defines the risk-neutral probability; cf. 1.5.

3



Lecture 5 Mathematical Finance and Numeric

The integral in (3.7) is precisely the expected payoff under the risk-neutral probability,
and (3.7) states that the price of the option is obtained by discounting the expected
payoff.

2. Numerical methods for stochastic differential equa-
tions

2.1 Motivation

According to 3.4 the value of a European option is the discounted expected payoff under
the risk-neutral probability:

V (0, S0) = e−rTEQ (ψ (S(T )))

For the standard Black–Scholes model:

V (0, S0) = e−rT
∫ ∞

0
ψ(x)ϕ(x, ξ, β) dx

with log-normal density ϕ and parameters

ξ = lnS0 +
(
r − σ2

2

)
T, β = σ

√
T .

A way to price the option:

1. Monte-Carlo method. In the Black–Scholes model, S(t) is defined by the SDE

dS(t) = rS(t)dt+ σS(t)dW (t), t ∈ [0, T ], S0 given

(risk-neutral, µ = r)

Solution: Geometric Brownian motion

S(t) = S0 exp
((

r − σ2

2

)
t+ σW (t)

)
.

This is the process which corresponds to ϕ(x, ξ, β), because S(T ) is log-normal with
the same parameters. Estimate the expected payoff as follows:

• Generate many realizations S(T, ω1), . . . , S(T, ωm), m ∈ N “large”.

• Approximate
V (0, S0) ≈ e−rT 1

m

m∑
j=1

ψ (S(T, ωj))
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Consider now a more complicated price process:

dS(t) = rS(t)dt+ σ(t)dW 1(t) (5.1a)

dσ2(t) = κ
(
θ − σ2(t)

)
dt+ ν

(
ρdW 1(t) +

√
1 − ρ2dW 2(t)

)
(5.1b)

Heston model with parameters r, κ, θ, ν > 0, initial values S0, σ0, independent scalar
Wiener processes W 1(t),W 2(t), correlation ρ ∈ [−1, 1]
Steven L. Heston 1993

Now the volatility is not a parameter, but a stochastic process defined by a second
SDE. We do not have an explicit formula for S(t) and σ(t), but the Monte-Carlo
approach is still feasible:

• Choose N ∈ N, define step-size τ = T/N and tn = nτ . For each ω1, . . . , ωm

compute approximations

X1
n(ωj) ≈ S(tn, ωj), X2

n(ωj) ≈ σ2(tn, ωj), n = 0, . . . , N

by solving the SDEs (5.1a), (5.1b) numerically.

• Approximate
V (0, S0) ≈ e−rT 1

m

m∑
j=1

ψ
(
X1

N(ωj)
)

The Monte-Carlo approach even works for other types of options. As an example,
consider an Asian option with payoff

ψ (t 7→ S(t)) =
(
S(T ) − 1

T

∫ T

0
S(t) dt

)+

(average strike call).

Now the payoff depends on the entire path t 7→ S(t). We approximate

S(T, ωj) ≈ X1
N(ωj),

1
T

∫ T

0
S(t, ωj) dt ≈ 1

N

N∑
n=1

X1
n(ωj)

and hence

V (0, S0) ≈ e−rT 1
m

m∑
j=1

(
X1

N(ωj) − 1
N

N∑
n=1

X1
n(ωj)

)+

Remark: In the original paper, Heston derives an explicit Black-Scholes-type formula
for European options by means of characteristic functions. Hence, European options in
the Heston model can also be priced by quadrature formulas, but for Asian options this
is impossible.

Goal: Construct and analyze numerical methods for SDEs.
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3. Euler-Maruyama method

3.1 Derivation

Consider the one-dimensional SDE

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), t ∈ [0, T ], X(0) = X0

with suitable functions f and g and a given initial value X0. Choose N ∈ N, define
step-size τ = T/N and tn = nτ .

X(tn+1) = X(tn) +
∫ tn+1

tn

f(s,X(s)) ds+
∫ tn+1

tn

g(s,X(s)) dW (s)

≈ X(tn) + (tn+1 − tn)f(tn, X(tn)) + g(tn, X(tn)) (W (tn+1) −W (tn))︸ ︷︷ ︸
=:∆Wn

Replacing X(tn) −→ Xn and “≈” −→ “=” yields the
Euler-Maruyama method (Gisiro Maruyama 1955, Leonhard Euler 1768-70):

For n = 0, . . . , N − 1 let ∆Wn = W (tn+1) −W (tn) and

Xn+1 = Xn + τf(tn, Xn) + g(tn, Xn)∆Wn.

Hope that Xn ≈ X(tn).

SDE recursion
X(t) exact approx.
Xn approx. exact

=⇒ X(tn) ≈ Xn

The exact solution X(tn) and the numerical approximation Xn are random variables.
For every path t 7→ W (t, ω) of the Wiener process, a different result is obtained. X(t) is
called strong solution if t 7→ W (t, ω) is given, and weak solution if t 7→ W (t, ω) can
be chosen. Approximations of weak solutions: For each n, generate a random number
Zn ∼ N (0, 1) and let

∆Wn =
√
τZn.

Question: Does Xn really approximate X(tn)? In which sense? How accurately?

3.2 Strong convergence

Definition 5.2.1 (strong convergence)
Let T > 0, N ∈ N, τ = T/N and tn = nτ . An approximation Xn(ω) ≈ X(tn, ω)
converges

• strongly with order γ > 0, if there is a constant C > 0 independent of τ such that

max
n=0,...,N

E (|X(tn) −Xn|) ≤ Cτ γ
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for all sufficiently small τ .

3.3 Existence and uniqueness of solutions of SDEs

Theorem 5.2.2 (existence and uniqueness)
Let f : R+ × R → R and g : R+ × R → R be functions with the following properties:

• Lipschitz condition: There is a constant L ≥ 0 such that

|f(t, x) − f(t, y)| ≤ L|x− y|, |g(t, x) − g(t, y)| ≤ L|x− y|

for all x, y ∈ R and t ≥ 0.

• Linear growth condition: There is a constant K ≥ 0 such that

|f(t, x)|2 ≤ K(1 + |x|2), |g(t, x)|2 ≤ K(1 + |x|2)

for all x ∈ R and t ≥ 0.

Then, the SDE

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), t ∈ [0, T ]

with deterministic initial value X(0) = X0 has a continuous adapted solution and

sup
t∈[0,T ]

E
(
X2(t)

)
< ∞.

If both X(t) and X̃(t) are such solutions, then

P
(
X(t) = X̃(t) for all t ∈ [0, T ]

)
= 1.

Proof: exercise.
Remark: The assumptions can be weakened.

3.4 Strong convergence of the Euler-Maruyama method

For simplicity, we only consider the autonomous SDE

dX(t) = f(X(t))dt+ g(X(t))dW (t), t ∈ [0, T ]

and the Euler–Maruyama approximation

Xn+1 = Xn + τf(Xn) + g(Xn)∆Wn.

with X(0) = X0, T > 0, N ∈ N, τ = T/N , tn = nτ .
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We assume that f = f(x) and g = g(x) satisfy the Lipschitz condition (5.2). In the
autonomous case, this implies the linear growth condition (5.3) (exercise).

Theorem 5.2.3 (strong error of the Euler-Maruyama method)
Under these conditions, there is a constant Ĉ such that

max
n=0,...,N

E (|X(tn) −Xn|) ≤ Ĉτ 1/2

for all sufficiently small τ . Ĉ does not depend on τ .
For the proof see the following.

Lemma 5.2.4 (Gronwall)

Let α : [0, T ] → R+ be a positive integrable function. If there are constants a > 0 and
b > 0 such that

0 ≤ α(t) ≤ a+ b
∫ t

0
α(s) ds

for all t ∈ [0, T ], then α(t) ≤ aebt.
Proof: exercise.

Proof of Theorem 5.2.3.

Strategy:

• Define the step function

Y (t) =
N−1∑
n=0

1[tn,tn+1)(t)Xn for t ∈ [0, T ), Y (T ) := XN .

For n = 0, . . . , N − 1 this means that

Y (t) = Xn ⇐⇒ t ∈ [tn, tn+1).

• Define α(s) := supr∈[0,s] E(|Y (r) −X(r)|2) and prove the Gronwall inequality

0 ≤ α(t) ≤ Cτ + b
∫ t

0
α(s) ds. (5.4)

• Apply Gronwall’s lemma. This yields α(t) ≤ τĈ2 with Ĉ2 = Cebt.

• Since1 E(Z) ≤
√
E(Z2) for random variables Z, it follows that

max
n=0,...,N

E (|Xn −X(tn)|) ≤ sup
t∈[0,T ]

E (|Y (t) −X(t)|)

≤ sup
t∈[0,T ]

√
E (|Y (t) −X(t)|2) =

√
α(T ) ≤

√
τĈ
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Main challenge: Prove Gronwall inequality (5.4). Choose fixed t ∈ [0, T ] and let n be
the index with t ∈ [tn, tn+1).

Derive integral representation of the error:

Y (t) = Xn = X0 +
n−1∑
k=0

(Xk+1 −Xk) = X0 +
n−1∑
k=0

(
τf(Xk) + g(Xk)∆Wk

)

= X0 +
n−1∑
k=0

∫ tk+1

tk

f(Xk) ds+
n−1∑
k=0

∫ tk+1

tk

g(Xk) dW (s)

= X0 +
∫ tn

0
f(Y (s)) ds+

∫ tn

0
g(Y (s)) dW (s)

Comparing with the exact solution

X(t) = X(0) +
∫ t

0
f(X(s)) ds+

∫ t

0
g(X(s)) dW (s)

yields the error representation

Y (t) −X(t) =
∫ tn

0
[f(Y (s)) − f(X(s))] ds︸ ︷︷ ︸

=:T1

+
∫ tn

0
[g(Y (s)) − g(X(s))] dW (s)︸ ︷︷ ︸

=:T2

−
∫ t

tn

f(X(s))ds︸ ︷︷ ︸
=:T3

−
∫ t

tn

g(X(s))dW (s)︸ ︷︷ ︸
=:T4

= T1 + T2 − T3 − T4.

The Cauchy-Schwarz inequality gives

(T1 + T2 − T3 − T4)2 = ((1, 1,−1,−1)T )2 ≤ 4∥T∥2
2 = 4 · (T 2

1 + T 2
2 + T 2

3 + T 2
4 )

and hence
E|Y (t) −X(t)|2 ≤ 4 · E

(
T 2

1 + T 2
2 + T 2

3 + T 2
4

)
.

First term: For functions u ∈ L2([0, tn]) the Cauchy-Schwarz inequality yields

(∫ tn

0
u(s) · 1 ds

)2
≤
∫ tn

0
|u(s)|2 ds ·

∫ tn

0
12 ds =

∫ tn

0
|u(s)|2 ds · tn. (5.5)

01Elementary calculation: 0 ≤ V(Z) = E
(
[Z − E(Z)]2

)
= E

[
Z2 − 2ZE(Z) + (E(Z))2] = E(Z2) −

(E(Z))2 and hence (E(Z))2 ≤ E(Z2).
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Using the Lipschitz bound (5.2), we obtain

E(T 2
1 ) = E

[(∫ tn

0
[f(Y (s)) − f(X(s))] ds

)2]

≤ tnE
(∫ tn

0
|f(Y (s)) − f(X(s))|2 ds

)
≤ TL2

∫ tn

0
E(|Y (s) −X(s)|2) ds

≤ TL2
∫ t

0
α(s) ds (since t ≥ tn).

Second term: It follows from the Itô isometry (Theorem 2.3.5) and the Lipschitz
bound (5.2) that

E(T 2
2 ) = E

(∫ tn

0
[g(Y (s)) − g(X(s))] dW (s)

)2

= E
(∫ tn

0
|g(Y (s)) − g(X(s))|2 ds

)
≤ L2

∫ tn

0
E(|Y (s) −X(s)|2) ds

≤ L2
∫ t

0
α(s) ds (since t ≥ tn).

Third term: Equation (5.5) and the linear growth bound (5.3) yield

E(T 2
3 ) = E

[(∫ t

tn

f(X(s)) ds
)2]

≤ (t− tn)E
(∫ t

tn

|f(X(s))|2 ds
)

≤ τK · E
(∫ t

tn

(1 + |X(s)|2) ds
)

≤ cτ 2

because Theorem 5.2.2 states that E(1 + |X(s)|2) remains bounded on [tn, t].
Last term: Using the Itô isometry and the linear growth bound (5.3) it follows that

E(T 2
4 ) = E

[(∫ t

tn

g(X(s)) dW (s)
)2]

≤ E
(∫ t

tn

|g(X(s))|2 ds
)

≤ K · E
(∫ t

tn

(1 + |X(s)|2) ds
)

≤ cτ

These bounds yield the Gronwall inequality (5.4) with b = 4(T + 1)L2 and with C

depending on K and sups∈[0,T ] E(1 + |X(s)|2).
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