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Consider the stochastic differential equation (SDE)
dX(t) = f(t, X(t))dt + g(t, X (t)) dW (1), te€0,T7], X (0) = X,
where:
o X(t)eRdforallte0,7],
o f:]0,T] x RY — R? is a measurable function (the drift),

o g:[0,T] x RY — R¥*™ is a measurable function (the diffusion),

o« W = (Wy,...,W,,) is a standard m-dimensional Wiener process on a filtered probability space
(Qa fa (-Ft)t207 ]P)v

¢ Xp is an Fy-measurable random variable in L2(;R%), i.e., E[|| Xo||?] < c0.
We assume the following conditions on the coefficients f and g:

o (Lipschitz condition) There exists a constant L > 0 such that for all t € [0, 7] and all z,y € RY,
1t 2) = f(& )l + gt =) — gt y)ll < Lz —yl|.
 (Linear growth condition) There exists a constant K > 0 such that for all ¢ € [0, 7] and z € R,

1£ )1 + llg(t 2)II* < K (1 + [|=]*).

e Both f and g are measurable and adapted: for each ¢, f(¢,-) and g(¢, -) are Borel measurable in z,

and for each z, f(-,z) and g(-,x) are measurable in ¢.

Theorem 1 Under these conditions, there exists a unique adapted continuous process X (t), t € [0,T],
which is R%-valued, such that

X(t) = Xo —l—/o f(s,X(s))ds +/0 g(s, X (s))dW(s) vt € [0, T,

and

E [ sup |X(t)||2] < 00.
te[0,7)
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Proof: Step 1: Construction via Picard iteration. Define a sequence of processes {X®) ()},
recursively. Set X(©)(t) := X for all t € [0,T]. For k > 0, define

XD = Xy + /Ot F(s, X®)(s))ds + /tg(S,X(k)(S)) AW (s),

0

where the stochastic integral is an [t0 integral. Step 2: Uniform moment bounds for each Picard iterate.
We prove by induction that for each k,

E l sup X(k)(t)zl < 0.
t€[0,T]

For k = 0, since X (t) = X,

E [ sup | Xt )IIQ] = E[|| Xo|*] < o0

te[0,T

Assume the bound holds for some k > 0. For X *+1)(¢), apply the triangle inequality:

¢ 2 ¢ 2
X<’““><t>|2s3<||xo|2+H | s6.x060as| | [ s, x O aws) )
0 0
Taking the supremum and expectation,
t 2
E bup | X D@12 | < 3E[|| Xo|?] + 3E | sup /f(s,X(k)(s))ds
tel0,T tefo0, 7] 110

+ 3E | sup

t€[0,7)

/0 o, X B (s)) 1V (5)

T
Using Jensen’s inequality for the deterministic integral and Doob’s martingale inequality for the

stochastic integral,

T
sup / fs. X0 as| | <7 | | f(s,x<k><s>>||2ds],
t€[0,T] 0
t 2 T
E[sup [ s x®enawe)| | <]/ |g<s,X<k><s>>2ds].
tefo,7] 11Jo 0

By the linear growth condition,
1 (s, XE ())IP + llg(s, XP ()P < KA+ [ XD (s)]%),

SO

E| sup [|X*FD(0))?

T T
S3E[HX0||2]+3TK/ (1+E[||X(’“)(S)||2])ds+12f(/ (1+E[XH) (s)]%]) ds
te[0,7T] 0 0

Since B[ X (s)[%] < E [sup, e 7y | X (1)]|?], we have

E | sup [|X*+D (2|2
te[0,T]

T
S01+C2/ E
0

sup X(k)(r)zl ds,

rel0,s]
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where C; = 3E[|| Xo||?|+ (3T K+12K)T and Cy = 3T K +12K. By Gronwall’s lemma, since the induction
hypothesis ensures the integral is finite,

E| sup [X*FD(0))?

t€[0,T]

<C,

for some constant C' depending on T, K,E[|| Xo||?]. Step 3: Cauchy property of the Picard sequence.
Define Y®)(t) := X+ () — X () (£). Then,

y® (1) = / (s, X (s)) — f(s, XED ()] ds + / 95, X ()) — g(s, XD (5))] dW (s).

Using the triangle inequality,

2

|Y<k><t>||2§2<\ / £, XB(s)) — £(s, XED ()] ds|| + / 95, X®(5)) — g5, XED(5))] dW (s)

2)
Taking the supremum and expectation, and applying Jensen’s and the Burkholder-Davis-Gundy (BDG)

inequalities,

E l sup [[Y®(#))?| < 2TE

te[0,7)

/0 1£(5, X9 (s)) — £(s, XED(5))]? ds]

+ 8E

/0 lg(s, X®(s) —g(s,X“f-”(s)ans] .

By the Lipschitz condition,
1 (s, X P () = (s, XEV )P + g5, X () = g(s, XETD () ? < 2L2 Y ED(9) )%,

SO

E

T T
sup ||Y<’“><t>||2]<<2TL2+8L2> [ eV oR] ds=co [ B[y Do) s
te[0,T] 0 0

where C3 = 2T'L? 4+ 8L2. Let aj, := sup,c(o 7 E[||[Y*) (¢)[|?]. Then,
ar < CsTag_1.

For C3T < 1 (or by splitting [0, 7] into smaller intervals), a, — 0 as k — co. Thus, {X*)} is a Cauchy
sequence in L2(2; C([0, T]; R?)) and converges to a limit X. Step 4: X is a solution. Since the integral

operators are continuous in L2, taking the limit as k — oo,

X(t):Xo—i-/O f(s,X(s))ds+/0 g(s, X (s)) dW(s).

Step 5: Uniqueness. Assume two solutions X () and X (t) with X(0) = X(0) = X,. Define Z(t) =

X(t) — X(¢t). Then,

2(t) = / (s, X(5)) — f(5, X ()] ds + / 95, X(s)) — g(s, X())] dW (s),
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with Z(0) = 0. Define

u(t) =E | sup | Z(s)|

s€[0,t]

We aim to show u(t) = 0 for all ¢ € [0, T].First, note that

sup ||Z(s)|| < sup
s€0,t] s€[0,t]

+ sup
s€[0,¢]

/ U X0)) — (X ()] dr

/ gt X(r)) — g, X ()] dW (r)

Using (a + b)? < 2a? + 2b2, we have

E | sup [|Z(s)|*| < 2E | sup /s[f(T,X(T))—f(T’X(T))]dT ]
s€0,t] selo,t] [IJ0
+2E | sup /S[g(r,xm)—g(r,f((r))}dmr) ]
s€[0,t] 0

Drift Term:

/O X)) — F(r, X ()] dr

S/O ||f(7’,X(T))*f(T’X(T))HdT’SL/O 12 (r)| dr.

Then,

Thus,

[0 - s X0 ar < (2 [ 120 dr)2 < 2% [ 1z Par < 2 [ 120 an

2

E| sup /Os[f(r,X(r»—f(nX(r))]dr

s€[0,t]

< 2% [ E[IZ()]P) dn

Diffusion Term: By the Burkholder-Davis-Gundy inequality,

2

E [ up <a [ gt X (1)) — ol X))

s€0,t]

/O 9(r X (r)) — g(r, X(r))] dW (1)

§4L2/0 E[|Z(r)||?] dr.

Combining both terms,

¢ ¢ ¢
u(t) < 2L2t/ E[|Z(r)|?] dr+8L2/ E[|Z(r)|?] dr < (2L2T+8L2)/ u(r) dr,
0 0 0
since E [||Z(r)||?] < u(r) and ¢t < T. Let K = 2L?T + 8L?. Then,

u(t) < K/O u(r) dr.

Since 4(0) = 0, by Gronwall’s lemma,
u(t) <0-eft =0.

Thus, u(t) = 0 for all t € [0,T], implying sup,cpo 1y |Z(@®)||*> = 0 almost surely. Therefore, Z(t) = 0
almost surely for all ¢, proving uniqueness.
Step 6: Moment bound. From Step 2, the uniform bound on {X *)} and convergence in L?(Q; C([0, T]; R%))
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imply

E [ sup |X(t)||2] < 00.
te[0,T)



