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Consider the stochastic differential equation (SDE)

dX(t) = f(t, X(t)) dt + g(t, X(t)) dW (t), t ∈ [0, T ], X(0) = X0,

where:

• X(t) ∈ Rd for all t ∈ [0, T ],

• f : [0, T ] × Rd → Rd is a measurable function (the drift),

• g : [0, T ] × Rd → Rd×m is a measurable function (the diffusion),

• W = (W1, . . . , Wm) is a standard m-dimensional Wiener process on a filtered probability space
(Ω, F , (Ft)t≥0,P),

• X0 is an F0-measurable random variable in L2(Ω;Rd), i.e., E[∥X0∥2] < ∞.

We assume the following conditions on the coefficients f and g:

• (Lipschitz condition) There exists a constant L > 0 such that for all t ∈ [0, T ] and all x, y ∈ Rd,

∥f(t, x) − f(t, y)∥ + ∥g(t, x) − g(t, y)∥ ≤ L∥x − y∥.

• (Linear growth condition) There exists a constant K > 0 such that for all t ∈ [0, T ] and x ∈ Rd,

∥f(t, x)∥2 + ∥g(t, x)∥2 ≤ K(1 + ∥x∥2).

• Both f and g are measurable and adapted: for each t, f(t, ·) and g(t, ·) are Borel measurable in x,
and for each x, f(·, x) and g(·, x) are measurable in t.

Theorem 1 Under these conditions, there exists a unique adapted continuous process X(t), t ∈ [0, T ],
which is Rd-valued, such that

X(t) = X0 +
∫ t

0
f(s, X(s)) ds +

∫ t

0
g(s, X(s)) dW (s) ∀t ∈ [0, T ],

and

E

[
sup

t∈[0,T ]
∥X(t)∥2

]
< ∞.
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Proof: Step 1: Construction via Picard iteration. Define a sequence of processes {X(k)(t)}∞
k=0

recursively. Set X(0)(t) := X0 for all t ∈ [0, T ]. For k ≥ 0, define

X(k+1)(t) := X0 +
∫ t

0
f(s, X(k)(s)) ds +

∫ t

0
g(s, X(k)(s)) dW (s),

where the stochastic integral is an Itô integral. Step 2: Uniform moment bounds for each Picard iterate.
We prove by induction that for each k,

E

[
sup

t∈[0,T ]
∥X(k)(t)∥2

]
< ∞.

For k = 0, since X(0)(t) = X0,

E

[
sup

t∈[0,T ]
∥X(0)(t)∥2

]
= E[∥X0∥2] < ∞.

Assume the bound holds for some k ≥ 0. For X(k+1)(t), apply the triangle inequality:

∥X(k+1)(t)∥2 ≤ 3
(

∥X0∥2 +
∥∥∥∥∫ t

0
f(s, X(k)(s)) ds

∥∥∥∥2

+
∥∥∥∥∫ t

0
g(s, X(k)(s)) dW (s)

∥∥∥∥2)
.

Taking the supremum and expectation,

E

[
sup

t∈[0,T ]
∥X(k+1)(t)∥2

]
≤ 3E[∥X0∥2] + 3E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f(s, X(k)(s)) ds

∥∥∥∥2]

+ 3E
[

sup
t∈[0,T ]

∥∥∥∥∫ t

0
g(s, X(k)(s)) dW (s)

∥∥∥∥2]
.

Using Jensen’s inequality for the deterministic integral and Doob’s martingale inequality for the
stochastic integral,

E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0
f(s, X(k)(s)) ds

∥∥∥∥2]
≤ TE

[∫ T

0
∥f(s, X(k)(s))∥2 ds

]
,

E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0
g(s, X(k)(s)) dW (s)

∥∥∥∥2]
≤ 4E

[∫ T

0
∥g(s, X(k)(s))∥2 ds

]
.

By the linear growth condition,

∥f(s, X(k)(s))∥2 + ∥g(s, X(k)(s))∥2 ≤ K(1 + ∥X(k)(s)∥2),

so

E

[
sup

t∈[0,T ]
∥X(k+1)(t)∥2

]
≤ 3E[∥X0∥2] + 3TK

∫ T

0
(1 +E[∥X(k)(s)∥2]) ds + 12K

∫ T

0
(1 +E[∥X(k)(s)∥2]) ds.

Since E[∥X(k)(s)∥2] ≤ E
[
supr∈[0,T ] ∥X(k)(r)∥2

]
, we have

E

[
sup

t∈[0,T ]
∥X(k+1)(t)∥2

]
≤ C1 + C2

∫ T

0
E

[
sup

r∈[0,s]
∥X(k)(r)∥2

]
ds,
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where C1 = 3E[∥X0∥2]+(3TK+12K)T and C2 = 3TK+12K. By Gronwall’s lemma, since the induction
hypothesis ensures the integral is finite,

E

[
sup

t∈[0,T ]
∥X(k+1)(t)∥2

]
≤ C,

for some constant C depending on T, K,E[∥X0∥2]. Step 3: Cauchy property of the Picard sequence.
Define Y (k)(t) := X(k+1)(t) − X(k)(t). Then,

Y (k)(t) =
∫ t

0
[f(s, X(k)(s)) − f(s, X(k−1)(s))] ds +

∫ t

0
[g(s, X(k)(s)) − g(s, X(k−1)(s))] dW (s).

Using the triangle inequality,

∥Y (k)(t)∥2 ≤ 2
(∥∥∥∥∫ t

0
[f(s, X(k)(s)) − f(s, X(k−1)(s))] ds

∥∥∥∥2

+
∥∥∥∥∫ t

0
[g(s, X(k)(s)) − g(s, X(k−1)(s))] dW (s)

∥∥∥∥2)
.

Taking the supremum and expectation, and applying Jensen’s and the Burkholder-Davis-Gundy (BDG)
inequalities,

E

[
sup

t∈[0,T ]
∥Y (k)(t)∥2

]
≤ 2TE

[∫ T

0
∥f(s, X(k)(s)) − f(s, X(k−1)(s))∥2 ds

]

+ 8E
[∫ T

0
∥g(s, X(k)(s)) − g(s, X(k−1)(s))∥2 ds

]
.

By the Lipschitz condition,

∥f(s, X(k)(s)) − f(s, X(k−1)(s))∥2 + ∥g(s, X(k)(s)) − g(s, X(k−1)(s))∥2 ≤ 2L2∥Y (k−1)(s)∥2,

so

E

[
sup

t∈[0,T ]
∥Y (k)(t)∥2

]
≤ (2TL2 + 8L2)

∫ T

0
E
[
∥Y (k−1)(s)∥2

]
ds = C3

∫ T

0
E
[
∥Y (k−1)(s)∥2

]
ds,

where C3 = 2TL2 + 8L2. Let ak := supt∈[0,T ] E[∥Y (k)(t)∥2]. Then,

ak ≤ C3Tak−1.

For C3T < 1 (or by splitting [0, T ] into smaller intervals), ak → 0 as k → ∞. Thus, {X(k)} is a Cauchy
sequence in L2(Ω; C([0, T ];Rd)) and converges to a limit X. Step 4: X is a solution. Since the integral
operators are continuous in L2, taking the limit as k → ∞,

X(t) = X0 +
∫ t

0
f(s, X(s)) ds +

∫ t

0
g(s, X(s)) dW (s).

Step 5: Uniqueness. Assume two solutions X(t) and X̃(t) with X(0) = X̃(0) = X0. Define Z(t) =
X(t) − X̃(t). Then,

Z(t) =
∫ t

0
[f(s, X(s)) − f(s, X̃(s))] ds +

∫ t

0
[g(s, X(s)) − g(s, X̃(s))] dW (s),
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with Z(0) = 0. Define

u(t) = E

[
sup

s∈[0,t]
∥Z(s)∥2

]
.

We aim to show u(t) = 0 for all t ∈ [0, T ].First, note that

sup
s∈[0,t]

∥Z(s)∥ ≤ sup
s∈[0,t]

∥∥∥∥∫ s

0
[f(r, X(r)) − f(r, X̃(r))] dr

∥∥∥∥+ sup
s∈[0,t]

∥∥∥∥∫ s

0
[g(r, X(r)) − g(r, X̃(r))] dW (r)

∥∥∥∥ .

Using (a + b)2 ≤ 2a2 + 2b2, we have

E

[
sup

s∈[0,t]
∥Z(s)∥2

]
≤ 2E

[
sup

s∈[0,t]

∥∥∥∥∫ s

0
[f(r, X(r)) − f(r, X̃(r))] dr

∥∥∥∥2
]

+ 2E
[

sup
s∈[0,t]

∥∥∥∥∫ s

0
[g(r, X(r)) − g(r, X̃(r))] dW (r)

∥∥∥∥2
]

.

Drift Term:∥∥∥∥∫ s

0
[f(r, X(r)) − f(r, X̃(r))] dr

∥∥∥∥ ≤
∫ s

0
∥f(r, X(r)) − f(r, X̃(r))∥ dr ≤ L

∫ s

0
∥Z(r)∥ dr.

Then,∥∥∥∥∫ s

0
[f(r, X(r)) − f(r, X̃(r))] dr

∥∥∥∥2
≤
(

L

∫ s

0
∥Z(r)∥ dr

)2
≤ L2s

∫ s

0
∥Z(r)∥2 dr ≤ L2t

∫ s

0
∥Z(r)∥2 dr.

Thus,

E

[
sup

s∈[0,t]

∥∥∥∥∫ s

0
[f(r, X(r)) − f(r, X̃(r))] dr

∥∥∥∥2
]

≤ L2t

∫ t

0
E
[
∥Z(r)∥2] dr.

Diffusion Term: By the Burkholder-Davis-Gundy inequality,

E

[
sup

s∈[0,t]

∥∥∥∥∫ s

0
[g(r, X(r)) − g(r, X̃(r))] dW (r)

∥∥∥∥2
]

≤ 4E
[∫ t

0
∥g(r, X(r)) − g(r, X̃(r))∥2 dr

]
≤ 4L2

∫ t

0
E
[
∥Z(r)∥2] dr.

Combining both terms,

u(t) ≤ 2L2t

∫ t

0
E
[
∥Z(r)∥2] dr + 8L2

∫ t

0
E
[
∥Z(r)∥2] dr ≤ (2L2T + 8L2)

∫ t

0
u(r) dr,

since E
[
∥Z(r)∥2] ≤ u(r) and t ≤ T . Let K = 2L2T + 8L2. Then,

u(t) ≤ K

∫ t

0
u(r) dr.

Since u(0) = 0, by Gronwall’s lemma,
u(t) ≤ 0 · eKt = 0.

Thus, u(t) = 0 for all t ∈ [0, T ], implying supt∈[0,T ] ∥Z(t)∥2 = 0 almost surely. Therefore, Z(t) = 0
almost surely for all t, proving uniqueness.
Step 6: Moment bound. From Step 2, the uniform bound on {X(k)} and convergence in L2(Ω; C([0, T ];Rd))
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imply

E

[
sup

t∈[0,T ]
∥X(t)∥2

]
< ∞.

□
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