
Lecture 3: The Itô Integral and Stochastic
Differential Equations
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Numerical Analysis Group, Department of Mathematics,

University of Tübingen

Today’s Agenda

1. Motivation: Why move from discrete to continuous models?

2. Introduction to probability spaces and stochastic processes.

3. Wiener process and its properties.

4. Itô integral: construction and properties.

5. Stochastic differential equations (SDEs) and the Itô formula.

6. Worked examples and exercises.

1. The Itô integral and stochastic differential equa-
tions

The model considered in 1.5 is clearly too simple: only two discrete times, only two
possible prices of S(T ).
Goal: Construct a more realistic model for the dynamics of S(t).
Ansatz:

dS

dt
= f(t, S)︸ ︷︷ ︸

ordinary differential equation

+ random noise︸ ︷︷ ︸
?

2.1 Some definitions from probability theory

Definition 2.1.1 (Probability space) The triple (Ω,F ,P) is called a probability space,
if the following holds:
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1. Ω ̸= ∅ is a set, and F is a σ-algebra (or σ-field) on Ω, i.e. a family of subsets of Ω
with the following properties:

• ∅ ∈ F

• If F ∈ F , then Ω \ F ∈ F

• If Fi ∈ F for all i ∈ N, then ⋃∞
i=1 Fi ∈ F

The pair (Ω,F) is called a measurable space.

2. P : F → [0, 1] is a probability measure, i.e.

• P(∅) = 0 and P(Ω) = 1
• If Fi ∈ F for all i ∈ N are pairwise disjoint (i.e. Fi ∩ Fj = ∅ for i ̸= j), then

P
( ∞⋃

i=1
Fi

)
=

∞∑
i=1

P(Fi).

A probability space is complete if F contains all subsets G of Ω with P-outer measure
zero, i.e. with

P∗(G) := inf{P(F ) : F ∈ F and G ⊂ F} = 0.

Any probability space can be completed. Hence, we can assume that every probability
space in this lecture is complete.

Definition 2.1.2 (Borel σ-algebra) If U is a family of subsets of Ω, then the σ-
algebra generated by U is

FU =
⋂

{F : F is a σ-algebra of Ω and U ⊂ F}.

If U is the collection of all open subsets of a topological space Ω (e.g. Ω = Rd), then
B = FU is called the Borel σ-algebra on Ω. The elements B ∈ B are called Borel sets.

For the rest of this section (Ω,F ,P) is a probability space.
Definition 2.1.3 (Measurable functions, random variables)

• A function X : Ω → Rd is called F -measurable if

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F

for all Borel sets B ∈ B. If (Ω,F ,P) is a probability space, then every F -measurable
function is called a random variable.

• Random variables X1, . . . , Xn are called independent if

P
( n⋂

i=1
X−1

i (Ai)
)

=
n∏

i=1
P(X−1

i (Ai))

for all A1, . . . , An ∈ B.
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• If X : Ω → Rd is any function, then the σ-algebra generated by X is the smallest σ-
algebra on Ω containing all the sets X−1(B) for all B ∈ B. Notation: FX = σ{X}.
FX is the smallest σ-algebra where X is measurable.

Definition 2.1.4 (Stochastic process) Let T be an ordered set (e.g. T = [0,∞),
T = N). A stochastic process is a family X = {Xt : t ∈ T} of random variables

Xt : Ω → Rd.

Below, we will often simply write Xt instead of {Xt : t ∈ T}. Equivalent notations:
X(t, ω), X(t), Xt(ω), Xt1 , . . . , Xtn . For a fixed ω ∈ Ω, the function t 7→ Xt(ω) is called a
realization (or path or trajectory) of X.

The path of a stochastic process is associated to some ω ∈ Ω. As time evolves, more
information about ω becomes available.

Example. Toss a coin three times. Possible results:

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

HHH HHT HTH HTT THH THT TTH TTT

(H = heads, T = tails).

• Before the first toss, we only know that ω ∈ Ω.

• After the first toss, we know if the final result will belong to {HHH,HHT,HTH,HTT}
or to {THH, THT, TTH, TTT}. These sets are ”resolved by the information”.
Hence, we know in which of the sets {ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8} ω is.

• After the second toss, the sets {HHH,HHT}, {HTH,HTT}, {THH, THT},
{TTH, TTT} are resolved, and we know in which of the sets {ω1, ω2}, {ω3, ω4},
{ω5, ω6}, {ω7, ω8} ω is.

Definition 2.1.5 (Filtration)

• A filtration is a family {Ft : t ≥ 0} of sub-σ-algebras of F such that Fs ⊂ Ft for
all t ≥ s ≥ 0.

• If {Xt : t ≥ 0} is a family of random variables and Xt is Ft-measurable, then
{Xt : t ≥ 0} is adapted to (or nonanticipating with respect to) {Ft : t ≥ 0}.
Interpretation: At time t we know for each set S ∈ Ft if ω ∈ S or not.

• {Ft : t ≥ 0} is called the natural filtration of a stochastic process Xt if Ft is the
smallest σ-algebra which contains FX

s for all s ∈ [0, t], i.e. Ft = σ{Xs, s ∈ [0, t]}.
This is the smallest filtration to which Xt is adapted.
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Definition 2.1.6 (Normal distribution) A random variable X : Ω → Rd with
d ∈ N is normal if it has a multivariate normal (Gaussian) distribution with mean µ ∈ Rd

and a symmetric, positive definite covariance matrix Σ ∈ Rd×d, i.e. if

P(X ∈ B) =
∫

B

1√
(2π)d det(Σ)

exp
(

−1
2(x− µ)T Σ−1(x− µ)

)
dx

for all Borel sets B ⊂ Rd. Notation: X ∼ N (µ,Σ)
Remarks:

1. If X ∼ N (µ,Σ), then E(X) = µ and Σ = (σij) with σij = E[(Xi − µi)(Xj − µj)].

2. Standard normal distribution ⇔ µ = 0, Σ = I. (I identity matrix)

3. If X ∼ N (µ,Σ) and Y = v + TX for some v ∈ Rd and a regular matrix T ∈ Rd×d,
then

Y ∼ N (v + Tµ, TΣT T ).

2.2 The Wiener process

A very important stochastic process is the Wiener process. This process will serve as the
“source of randomness” in our model of the financial market.
Robert Brown 1827, Louis Bachelier 1900, Albert Einstein 1905, Norbert Wiener 1923

Definition 2.2.1 (Wiener process, Brownian motion)
A continuous-time stochastic process {Wt : t ∈ [0, T )} is called a standard Brownian
motion or standard Wiener process if it has the following properties:

1. W0 = 0 (with probability one)

2. Independent increments: For all 0 ≤ t1 < t2 < · · · < tn < T the random variables

Wt2 −Wt1 ,Wt3 −Wt2 , . . . ,Wtn −Wtn−1

are independent.

3. Wt −Ws ∼ N (0, t− s) for any 0 ≤ s < t < T .

4. There is a Ω̂ ⊂ Ω with P(Ω̂) = 1 such that t 7→ Wt(ω) is continuous for all ω ∈ Ω̂.

If W (1)
t , . . . ,W

(d)
t are independent one-dimensional Wiener processes, then Wt =(

W
(1)
t , . . . ,W

(d)
t

)
is called a d-dimensional Wiener process, and

Wt −Ws ∼ N (0, (t− s)I).
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Numerical simulation of a Wiener process

Choose step-size h > 0, put tn = n · h and W̃0 = (0, . . . , 0) ∈ Rd.
For n = 0, 1, 2, 3, . . .

• Generate random vector Zn ∼ N (0, I)

• W̃n+1 = W̃n +
√
hZn

For h → 0 the interpolation of W̃n, n ∈ N approximates a path of Brownian motion.
How smooth is a path of a Wiener process? Consider only d = 1.

Hölder continuity and non-differentiability

A function f : (a, b) → R is Hölder continuous of order α for some α ∈ [0, 1] if there
is a constant C such that

|f(t) − f(s)| ≤ C|t− s|α for all s, t ∈ (a, b).

If α = 1, then f is Lipschitz continuous.
If α > 0, then f is uniformly continuous.
If α = 0, then f is bounded.

A path of Brownian motion on a bounded interval is Hölder continuous for any α ∈
(0, 1

2) with probability one.
For α ≥ 1

2 , however, the path is not Hölder continuous with probability one.
In particular, a path of Brownian motion is nowhere differentiable with probability one.

Proofs: [Ste01], chapter 5

Unbounded total variation

Let [a, b] be an interval and let

PN = (tn)N
n=0, a = t0 < t1 < · · · < tN = b

be a partition of [a, b] with |PN | = maxn |tn − tn−1|.
Example: equidistant partition, h = (b−a)/N , tn = a+n ·h. Then, the total variation
of a function f : (a, b) → R is

TVa,b(f) = lim
N→∞

|PN |→0

N∑
n=1

|f(tn) − f(tn−1)|.

If f is differentiable and f ′ is integrable, then (exercise)

TVa,b(f) =
∫ b

a
|f ′(t)| dt
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Conversely: If a function f has bounded total variation, then its derivative exists for
almost all x ∈ [a, b].
Consequence: A path of the Wiener process has unbounded total variation with proba-
bility one.

Quadratic variation

The quadratic variation of a function f : (a, b) → R is

QVa,b(f) = lim
N→∞

|PN |→0

N∑
n=1

(f(tn) − f(tn−1))2 .

If f is continuously differentiable, then (exercise)

QVa,b(f) = 0.

For a path t 7→ Wt(ω) with t ∈ [0, T ], however, it can be shown (exercise) that

lim
N→∞

|PN |→0

∥∥∥∥∥
N∑

n=1

(
Wtn(ω) −Wtn−1(ω)

)2
− T

∥∥∥∥∥
L2(P)

= 0,

where
∥X∥L2(P) =

√
E(X2) =

(∫
ω∈Ω

X2(ω) dP(ω)
)1/2

.

By choosing a suitable subsequence, it can be concluded that QV0,t(t 7→ Wt(ω)) = t

with probability one.

The standard Brownian filtration

The natural filtration of Brownian motion on [0, T ] is given by

{Ft : t ∈ [0, T ]}, Ft = σ{Ws, s ∈ [0, t]}

(cf. Definition 2.1.5). For technical reasons, however, it is more advantageous to use the
augmented filtration:

• For fixed t let Z = {S ∈ σ{Ws, s ∈ [0, T ]} : P(S) = 0}.

• Let Ẑ = {Ŝ ⊂ Ω : Ŝ ⊂ S for some S ∈ Z}.

• Extend P by defining P(Ŝ) = 0 for all Ŝ ∈ Ẑ.

• Re-define Ft as the smallest σ-algebra which contains σ{Ws, s ∈ [0, t]} and Ẑ.

This filtration is called the standard Brownian filtration.

• Consequence: Ft fulfills the “usual conditions”, i.e.
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– If Ŝ ∈ Ẑ, then Ŝ ∈ F0.

– Right continuity: Ft = ⋂
s>t Fs

2.3 The Itô integral

Itô Kiyoshi 1944

Motivation

Goal: Define stochastic differential equations. Näıve Ansatz:

dX

dt
= f(t,X)︸ ︷︷ ︸

ordinary differential equation

+ g(t,X)Z(t)︸ ︷︷ ︸
random noise

, Z(t) = ?

Apply explicit Euler method: Choose t ≥ 0 and step-size N ∈ N, let h = t/N ,
tn = n · h and define approximations Xn ≈ X(tn) by

Xn+1 = Xn + hf(tn, Xn) + hg(tn, Xn)Z(tn) (n = 0, 1, 2, . . .).

In the special case f(t,X) = 0 and g(t,X) = 1, we want that Xn = W (tn) is the Wiener
process, i.e. we postulate that

W (tn+1) != W (tn) + hZ(tn).

This yields
Xn+1 = Xn + hf(tn, Xn) + g(tn, Xn) (W (tn+1) −W (tn))

and after N steps

XN = X0 + h
N−1∑
n=0

f(tn, Xn) +
N−1∑
n=0

g(tn, Xn) (W (tn+1) −W (tn)) . (2.2)

Keep t fixed, let N → ∞, h = t/N → 0. Then, (2.2) should somehow converge to

X(t) = X(0) +
∫ t

0
f(s,X(s)) ds+

∫ t

0
g(s,X(s)) dW (s). (2.3)

Problem: We cannot define (⋆) as a pathwise Riemann-Stieltjes integral! When N → ∞,
the sum

N−1∑
n=0

g(tn, Xn(ω)) (W (tn+1, ω) −W (tn, ω))

diverges with probability one, because a path of the Wiener process has unbounded total
variation with probability one.

7



Lecture 3 Mathematical Finance and Numeric

New goal: Define the integral

It[u](ω) =
∫ t

0
u(s, ω) dWs(ω)

in a “reasonable” way for the following class of functions.
Definition 2.3.1 Let (Ω,F ,P) be a probability space, and let {Ft : t ∈ [0, T ]} be the

standard Brownian filtration. Then, we define H2 = H2[0, T ] to be the class of functions

u = u(t, ω), u : [0, T ] × Ω −→ R

with the following properties:

• (t, ω) 7→ u(t, ω) is (B × F)-measurable.

• u is adapted to {Ft : t ∈ [0, T ]}, i.e. u(t, ·) is Ft-measurable.

• E
(∫ T

0 u2(t, ω) dt
)
< ∞

Step 1: Itô integral for elementary functions

Definition 2.3.2 (Elementary functions) A function ϕ ∈ H2 is called elementary if
it is a stochastic step function of the form

ϕ(t, ω) = a0(ω) 1[0,t1)(t) +
N−1∑
n=0

an(ω) 1[tn,tn+1)(t)

= a0(ω) 1[0,t1)(t) +
N−1∑
n=1

an(ω) 1[tn,tn+1)(t)

where an is Ftn-measurable with E(a2
n) < ∞. Here and below,

1[c,d](t) =

1 if t ∈ [c, d]
0 else

(2.4)

is the indicator function of an interval [c, d].
For 0 ≤ c < d ≤ T , the only reasonable way to define the Itô integral of an indicator

function 1[c,d] is

IT [1[c,d]](ω) =
∫ T

0
1[c,d](s) dW (s, ω) =

∫ d

c
dW (s, ω) = W (d, ω) −W (c, ω).

Hence, by linearity, we define the Itô integral of an elementary function by

IT [ϕ](ω) =
N−1∑
n=0

an(ω) (W (tn+1, ω) −W (tn, ω)) .
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Lemma 2.3.3 (Itô isometry for elementary functions) For all elementary func-
tions we have

E
(
IT [ϕ]2

)
= E

(∫ T

0
ϕ2(t, ω) dt

)

or equivalently
∥IT [ϕ]∥L2(P) = ∥ϕ∥L2(dt×dP)

with

∥ϕ∥L2(dt×dP) =
(∫

Ω

∫ T

0
ϕ2(t, ω) dt dP

) 1
2

=
(
E
(∫ T

0
ϕ2(t, ω) dt

)) 1
2

.

Proof. Since

ϕ2(t, ω) = a2
0(ω)1[0,t1)(t) +

N−1∑
n=0

a2
n(ω)1[tn,tn+1)(t)

we obtain
E
(∫ T

0
ϕ2(t, ω) dt

)
=

N−1∑
n=0

E
(
a2

n

)
(tn+1 − tn) (2.5)

for the right-hand side. If we let ∆Wn = W (tn+1) −W (tn), then

IT [ϕ]2 =
(

N−1∑
n=0

an∆Wn

)2

=
N−1∑
n=0

N−1∑
m=0

anam∆Wn∆Wm. (2.6)

By definition, the Wiener process has independent increments with E(∆Wn) = 0 and
E(∆W 2

n) = V(∆Wn) = tn+1 − tn. Since an is independent of ∆Wn, it follows that

E(anam∆Wn∆Wm) =

0 if n ̸= m

E(a2
n)(tn+1 − tn) if n = m

and taking the expectation of (2.6) gives

E
(
IT [ϕ]2

)
=

N−1∑
n=0

E(a2
n)(tn+1 − tn). (2.7)

Comparing (2.5) and (2.7) yields the assertion. ■

Step 2: Itô integral on H2

Lemma 2.3.4 For any u ∈ H2 there is a sequence (ϕk)k∈N of elementary functions
ϕk ∈ H2 such that

lim
k→∞

∥u− ϕk∥L2(dt×dP) = 0

Proof: Section 6.6 in [Ste01].
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Let u ∈ H2 and let (ϕk)k∈N be elementary functions such that

u = lim
k→∞

ϕk in L2(dt× dP)

as in Lemma 2.3.4. The linearity of IT [·] and Lemma 2.3.3 yield

∥IT [ϕj] − IT [ϕk]∥L2(P) = ∥IT [ϕj − ϕk]∥L2(P) = ∥ϕj − ϕk∥L2(dt×dP) −→ 0

for j, k → ∞. Hence, (IT [ϕk])k is a Cauchy sequence in the Hilbert space L2(dP). Thus,
(IT [ϕk])k converges in L2(dP), and we can define

IT [u] = lim
k→∞

IT [ϕk].

The choice of the sequence does not matter: If (ψk)k∈N are elementary functions with
u = limk→∞ ψk in L2(dt× dP), then by Lemma 2.3.3 we obtain for k → ∞

∥IT [ϕk] − IT [ψk]∥L2(P) = ∥IT [ϕk − ψk]∥L2(P)

= ∥ϕk − ψk∥L2(dt×dP)

≤ ∥ϕk − u∥L2(dt×dP) + ∥u− ψk∥L2(dt×dP) −→ 0.

Theorem 2.3.5 (Itô isometry) For all u ∈ H2 we have

∥IT [u]∥L2(P) = ∥u∥L2(dt×dP).

Proof: Exercise.

Step 3: The Itô integral as a process

So far we have defined the Itô integral IT [u](ω) over the interval [0, T ] for fixed T . For
applications in mathematical finance, however, we want to consider {It[u](ω) : t ∈ [0, T ]}
as a stochastic process. Therefore, we let

mt(s, ω) =

1 if s ∈ [0, t]
0 else.

If u ∈ H2, then mtu ∈ H2. Can we define It[u](ω) by IT [mtu](ω)? No! Problem: The
integral IT [mtu](ω) is only defined in L2(dP). Hence, the value IT [mtu](ω) is arbitrary
on sets of P-measure zero. This is the case for every t ∈ [0, T ], and since the set [0, T ] is
uncountable, the union ⋃

t∈[0,T ]
{Zt ∈ Ft : P(Zt) = 0}

(i.e. the set where the process is not well-defined) could be “very large”!
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Let (ϕk)k∈N be elementary functions with limk→∞ ϕk = u. Define a continuous process
by

X(k)(t, ω) = IT [mtϕk](ω).

It can be shown that there is a sub-sequence (X(kj))j such that

max
t∈[0,T ]

|X(kj)(t, ω) −X(kj′ )(t, ω)| −→ 0 for i, j −→ ∞

with probability one. Hence, (X(kj))j converges uniformly on [0, T ] to a continuous process
X with probability one. The assumption

lim
k→∞

mtϕk = mtu wrt. ∥ · ∥L2(dt×dP)

implies
lim

k→∞
IT [mtϕk] = IT [mtu] wrt. ∥ · ∥L2(dP),

and since it also can be shown that

lim
k→∞

X(kj)(t, ω) = X(t, ω) wrt. ∥ · ∥L2(dP),

it follows that for each t ∈ [0, T ]

X(t, ω) = IT [mtu](ω)

with probability one. Details: Theorem 6.2 in [Ste01].

Step 4: The Itô integral on L2
loc

So far we have defined the Itô integral for functions u ∈ H2([0, T ]); cf. Definition 2.3.1.
Such functions must satisfy

E
(∫ T

0
u2(t, ω) dt

)
< ∞, (2.8)

and this condition is sometimes too restrictive. With some more work, the Itô integral
can be extended to all functions

u = u(t, ω), u : [0, T ] × Ω −→ R

with the following properties:

• (t, ω) 7→ u(t, ω) is (B × F)-measurable.

• u is adapted to {Ft : t ∈ [0, T ]}.

• P
(∫ T

0 u2(t, ω) dt < ∞
)

= 1

11
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This class is called L2
loc[0, T ]. The first two conditions are the same as for H2, but

the third condition is weaker than (2.8). If y : R −→ R is continuous, then u(t, ω) =
y (W (t, ω)) ∈ L2

loc[0, T ], because ω 7→ y (W (t, ω)) is continuous with probability one and
hence bounded on [0, T ].

Details: Chapter 7 in [Ste01].

Notation

The process X constructed above is called the Itô integral of u ∈ L2
loc[0, T ] and is

denoted by
X(t, ω) =

∫ t

0
u(s, ω) dW (s, ω).

The Itô integral over an arbitrary interval [a, b] ⊂ [0, T ] is defined by
∫ b

a
u(s, ω) dW (s, ω) =

∫ b

0
u(s, ω) dW (s, ω) −

∫ a

0
u(s, ω) dW (s, ω).

Alternative notations:∫ b

a
u(s, ω) dW (s, ω) =

∫ b

a
u(s, ω) dWs(ω) =

∫ b

a
us(ω) dWs(ω) =

∫ b

a
us dWs

Properties of the Itô integral

Lemma 2.3.6 The Itô integral on [a, b] ⊂ [0, T ] has the following properties:

1. Linearity: For all c ∈ R and u, v ∈ L2
loc, we have

∫ b

a
(cu(s, ω) + v(s, ω)) dWs(ω) = c

∫ b

a
u(s, ω) dWs(ω) +

∫ b

a
v(s, ω) dWs(ω)

with probability one.

2.
E
(∫ b

a
u(s, ω) dWs(ω)

)
= 0

3.
∫ t

a
u(s, ω) dWs(ω) is Ft-measurable for t ≥ a.

4. Itô isometry on [a, b]: For all u ∈ L2
loc we have

E

(∫ b

a
u(s, ω) dWs(ω)

)2
 = E

(∫ b

a
u2(s, ω) ds

)

Proof. Show these properties for elementary functions and pass to the limit. ■
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Important example.

The Itô integral of u(s, ω) = W (s, ω) on [0, t] yields (exercise!)
∫ t

0
W (s, ω) dW (s, ω) = 1

2W
2(t, ω) − 1

2t. (2.9)

The term −1
2t is surprising, because for the corresponding Riemann-Stieltjes integral

of a continuously differentiable (deterministic) function v : [0, t] −→ R with v(0) = 0, we
obtain ∫ t

0
v(s) dv(s) =

∫ t

0
v(s)v′(s) ds = 1

2

∫ t

0

d

ds
(v2(s)) ds = 1

2v
2(t). (2.10)

The reason for the “strange” behaviour of the Itô integral will be revealed in the next
subsection.

2.4 Stochastic differential equations and the Itô formula

Definition 2.4.1 (SDE) A stochastic differential equation (SDE) is an equation
of the form

X(t) = X(0) +
∫ t

0
f(s,X(s)) ds+

∫ t

0
g(s,X(s)) dW (s). (2.11)

The functions f : R × R −→ R and g : R × R −→ R are called drift and diffusion
coefficients, respectively. These functions are typically given while X(t) = X(t, ω) is
unknown. The solution X(t) is called an Itô process.

This equation is actually not a differential equation, but an integral equation
Often people write

dXt = f(t,Xt)dt+ g(t,Xt)dWt

as a shorthand notation for (2.11). Some people even “divide by dt” in order to make the
equation look like a differential equation, but this is more than audacious since “dWt/dt”
does not make sense.

Two special cases:

• If g(t,X(t)) ≡ 0, then (2.11) is reduced to

X(t) = X(0) +
∫ t

0
f(s,X(s)) ds.

If X(t) is differentiable, this is equivalent to the initial value problem

dX(t)
dt

= f(t,X(t)), X(0) = X0.

13
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• For f(t,X(t)) ≡ 0, g(t,X(t)) ≡ 1 and X(0) = 0, (2.11) turns into

X(t) = X(0)︸ ︷︷ ︸
=0

+
∫ t

0
f(s,X(s)) ds︸ ︷︷ ︸

=0

+
∫ t

0
g(s,X(s))︸ ︷︷ ︸

=1

dW (s) = W (t) −W (0) = W (t).

Computing Riemann integrals via the basic definition is usually very tedious. The
fundamental theorem of calculus provides an alternative which is more convenient in most
cases. For Itô integrals, the situation is similar: The approximation via elementary func-
tions is rarely used to compute the integral. What is the counterpart of the fundamental
theorem of calculus for the Itô integral?

Theorem 2.4.2 (Itô formula) Let Xt be the solution of the SDE

dXt = f(t,Xt)dt+ g(t,Xt)dWt

and let F (t, x) be a function with continuous partial derivatives ∂F
∂t

, ∂F
∂x

, and ∂2F
∂x2 . Then,

we have for Yt := F (t,Xt) that

dYt = ∂F

∂t
dt+ ∂F

∂x
dXt + 1

2
∂2F

∂x2 g
2dt

=
(
∂F

∂t
+ ∂F

∂x
f + 1

2
∂2F

∂x2 g
2
)
dt+ ∂F

∂x
gdWt. (2.12)

with f = f(t,Xt), g = g(t,Xt), ∂F
∂x

= ∂F (t,Xt)
∂x

, and so on. Notation. From now on, the
partial derivatives of some function u(t, x) will be denoted by

∂tu := ∂u

∂t
, ∂xu := ∂u

∂x
, ∂2

xu := ∂2u

∂x2

and so on. Evaluations of the derivatives of F are to be understood in the sense of, e.g.,

∂xF (s,Xs) := ∂xF (t, x)|(t,x)=(s,Xs)

and so on.
Remarks:

1. The Itô formula can be considered as a stochastic chain rule, but the term 1
2∂

2
xF ·g2dt

is surprising since such a term does not appear in the chain rule for deterministic
functions: If Xt and F (t, x) are smooth deterministic functions, then the derivative
of t 7→ F (t,Xt) is

∂tF (t,Xt) + ∂xF (t,Xt) · dXt

dt
, i.e. dF = ∂tFdt+ ∂xFdXt.

2. Let f(t,Xt) = 0, g(t,Xt) = 1, Xt = Wt and suppose that F (t, x) = F (x). Then,

14
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the Itô formula yields for Yt := F (Wt) that

dYt = F ′(Wt)dWt + 1
2F

′′(Wt)dt

which is the shorthand notation for

F (Wt) = F (W0) +
∫ t

0
F ′(Ws)dWs + 1

2

∫ t

0
F ′′(Ws)ds.

This can be seen as a counterpart of the fundamental theorem of calculus. Again,
the last term is surprising, because for a suitable deterministic function v(t) = vt

we obtain
F (vt) = F (v0) +

∫ t

0
F ′(vs)dvs.

Sketch of the proof of Theorem 2.4.2.

• Equation (2.12) is the shorthand notation for

Yt = Y0 +
∫ t

0

(
∂tF (s,Xs) + ∂xF (s,Xs) · f(s,Xs) + 1

2∂
2
xF (s,Xs) · g2(s,Xs)

)
ds

+
∫ t

0
∂xF (s,Xs) · g(s,Xs)dWs

Assume that F is twice continuously differentiable with bounded partial derivatives.
(Otherwise F can be approximated by such functions with uniform convergence on com-
pact subsets of [0,∞)×R.) Assume that (t, ω) 7→ f(t,Xt(ω)) and (t, ω) 7→ g(t,Xt(ω)) are
elementary functions. (Otherwise approximate by elementary functions.) Hence, there is
a partition 0 = t0 < t1 < . . . < tN = t such that

f(t,Xt(ω)) = f(0, X0(ω))1[0,t1)(t) +
N−1∑
n=1

f(tn, Xtn(ω))1[tn,tn+1)(t)

and the same equation with f replaced by g.
Notation: For the rest of the proof, we define

f (n) := f(tn, Xtn), F (n) := F (tn, Xtn),

g(n) := g(tn, Xtn), ∂tF
(n) := ∂tF (tn, Xtn)

and so on, and

∆tn = tn+1 − tn, ∆Xn = Xtn+1 −Xtn , ∆Wn = Wtn+1 −Wtn .

Since f and g are elementary functions, we have

Xtn = X0 +
∫ tn

0
f(s,Xs) ds+

∫ tn

0
g(s,Xs) dWs

15



Lecture 3 Mathematical Finance and Numeric

Xtn = X0 +
n−1∑
k=0

f(tk, Xtk
)∆tk +

n−1∑
k=0

g(tk, Xtk
)∆Wk.

and hence
∆Xn = Xtn+1 −Xtn = f (n)∆tn + g(n)∆Wn.

Telescoping sum:

Yt = YtN
= Y0 +

N−1∑
n=0

(Ytn+1 − Ytn) = Y0 +
N−1∑
n=0

(F (n+1) − F (n))

Apply Taylor’s theorem:

F (n+1) − F (n) = ∂tF
(n) · ∆tn + ∂xF

(n) · ∆Xn + 1
2∂

2
xF

(n) · (∆Xn)2 + ∂t∂xF
(n) · ∆tn∆Xn

+ 1
2∂

2
t F

(n) · (∆tn)2 +Rn(∆tn,∆Xn)

with a remainder term Rn. Insert this into the telescoping sum.

• Consider the limit N → ∞, ∆tn → 0 with respect to ∥ · ∥L2(dP). For the first two
terms, this yields

lim
N→∞

N−1∑
n=0

∂tF
(n) · ∆tn = lim

N→∞

N−1∑
n=0

∂tF (tn, Xtn) · ∆tn =
∫ t

0
∂tF (s,Xs) ds

and

lim
N→∞

N−1∑
n=0

∂xF
(n) · ∆Xn = lim

N→∞

N−1∑
n=0

∂xF
(n) · f (n)∆tn + lim

N→∞

N−1∑
n=0

∂xF
(n) · g(n)∆Wn

=
∫ t

0
∂xF (s,Xs) · f(s,Xs) ds+

∫ t

0
∂xF (s,Xs) · g(s,Xs) dWs.

• Next, we investigate the “∂2
xF

(n) term”. Since

(∆Xn)2 =
(
f (n)∆tn + g(n)∆Wn

)2

we have

1
2

N−1∑
n=0

∂2
xF

(n) · (∆Xn)2 = 1
2

N−1∑
n=0

∂2
xF

(n) · (f (n))2(∆tn)2 (2.13)

+
N−1∑
n=0

∂2
xF

(n) · f (n)g(n)∆tn∆Wn (2.14)

+ 1
2

N−1∑
n=0

∂2
xF

(n) · (g(n))2(∆Wn)2. (2.15)

16
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For the right-hand side of (2.13), we obtain

∥∥∥∥∥
N−1∑
n=0

∂2
xF

(n) · (f (n))2(∆tn)2
∥∥∥∥∥

2

L2(dP)
= E

(N−1∑
n=0

∂2
xF

(n) · (f (n))2(∆tn)2
)2 −→ 0.

With the abbreviation α(n) := ∂2
xF

(n) · f (n)g(n) we obtain for the right-hand side of
(2.14) that

∥∥∥∥∥
N−1∑
n=0

α(n)∆tn∆Wn

∥∥∥∥∥
2

L2(dP)
= E

(N−1∑
n=0

α(n)∆tn∆Wn

)2 =
N−1∑
n=0

N−1∑
m=0

E
(
α(n)α(m)∆tn∆tm∆Wn∆Wm

)
.

Since
E
(
α(n)α(m)∆Wn∆Wm

)
= E

(
α(n)α(m)

)
E (∆Wn∆Wm) = 0

for n < m and similar for m < n, only the terms with n = m have to be considered,
which yields

∥∥∥∥∥
N−1∑
n=0

α(n)∆tn∆Wn

∥∥∥∥∥
2

L2(dP)
=

N−1∑
n=0

E
(
(α(n))2

)
(∆tn)2E

[
(∆Wn)2

]
=∆tn

−→ 0.

The third term (2.15), however, has a non-zero limit: We show that

lim
N→∞

1
2

N−1∑
n=0

∂2
xF

(n) · (g(n))2 (∆Wn)2 = 1
2

∫ t

0
∂2

xF (s,Xs) · (g(s,Xs))2 ds

which yields the strange additional term in the Itô formula. With the abbreviation
β(n) = 1

2∂
2
xF

(n) · (g(n))2 we have

∥∥∥∥∥
N−1∑
n=0

β(n)
(
(∆Wn)2 − ∆tn

)∥∥∥∥∥
2

L2(dP)
= E

(N−1∑
n=0

β(n)
(
(∆Wn)2 − ∆tn

))2

= E
[

N−1∑
n=0

N−1∑
m=0

β(n)β(m)
(
(∆Wn)2 − ∆tn

) (
(∆Wm)2 − ∆tm

)]
.

For n < m we have

E
[
β(n)β(m)

(
(∆Wn)2 − ∆tn

) (
(∆Wm)2 − ∆tm

)]
= E

[
β(n)β(m)

(
(∆Wn)2 − ∆tn

)]
E
[(

(∆Wm)2 − ∆tm
)]

=0
= 0

and vice versa for n > m. Hence, only the terms with n = m have to be considered, and
we obtain

∥∥∥∥∥
N−1∑
n=0

β(n)
(
(∆Wn)2 − ∆tn

)∥∥∥∥∥
2

L2(dP)
= E

[
N−1∑
n=0

(
β(n)

)2 (
(∆Wn)2 − ∆tn

)2
]
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=
N−1∑
n=0

E
[(
β(n)

)2
]
E
[(

(∆Wn)2 − ∆tn
)2
]

according to Exercise 5.

• With essentially the same arguments, it can be shown that

lim
N→∞

1
2

N−1∑
n=0

∂2
t F

(n) · (∆tn)2 = 0

lim
N→∞

N−1∑
n=0

∂t∂xF
(n) · ∆tn∆Xn = 0

and that the remainder term from the Taylor expansion can be neglected when the
limit is taken. ■
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