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Assignment Overview

This assignment introduces numerical methods for solving stochastic differential

equations (SDEs). You will implement and compare numerical schemes by simu-

lating sample paths, computing errors, and analyzing convergence rates. For each

exercise:

• SimulateM sample paths (trajectories) over the time interval [0, 1] using time

steps ∆t = 2−k for k = 4, 5, 6, 7 (i.e., ∆t = 1/16, 1/32, 1/64, 1/128).

• Create a reference solution using a very small time step ∆tref = 2−12 =

1/4096.

• Compute the root-mean-square (RMS) strong error at the final time T = 1:

E(∆t) =

√√√√ 1

M

M∑
j=1

∣∣∣X(j),scheme
T −X

(j),ref
T

∣∣∣2,
where X

(j),scheme
T is the solution from the numerical scheme for the j-th path,

and X
(j),ref
T is the reference solution for the same path.

• Plot log(E(∆t)) versus log(∆t) for the different ∆t values. Fit a straight line

to estimate the empirical order of convergence (the slope of the line).

• Use a programming language like Python, MATLAB, or R for simulations.

Include your code and plots in your submission.

Hint: The empirical order of convergence is found by fitting a line to the log-log

plot. If E(∆t) ≈ C(∆t)γ, then log(E(∆t)) ≈ log(C) + γ log(∆t), and the slope γ

is the order of convergence.
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Getting Started

An SDE has the form dXt = a(Xt, t)dt+b(Xt, t)dWt, where a is the drift, b is the diffusion,

and Wt is a Wiener process (Brownian motion). Numerical schemes approximate the

solution by discretizing time into steps ∆t. The Euler–Maruyama (EM) scheme is a

common method, defined as:

Xn+1 = Xn + a(Xn, tn)∆t+ b(Xn, tn)∆Wn,

where ∆Wn = Wtn+1 −Wtn ∼ N (0,∆t) is a normal random variable with mean 0 and

variance ∆t. For each sample path, generate a sequence of ∆Wn using random numbers.

Programming Tips:

• Use a loop to simulate M sample paths.

• For each path, generate random increments ∆Wn ∼ N (0,∆t).

• Store the final value XT for each path to compute the RMS error.

• Use the same random seed for the reference solution and the scheme to ensure the

same Brownian increments.

Exercises

Exercise 1. Ornstein–Uhlenbeck Process (Linear SDE)

Consider the SDE:

dXt = θ(µ−Xt)dt+ σdWt, X0 = 0, T = 1,

with parameters θ = 2, µ = 1, σ = 0.5.

(a) The exact solution to this SDE is:

Xt = µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs.

Implement this incrementally for a time step ∆t. For a time step from

tn to tn+1, compute:

Xtn+1 = e−θ∆tXtn + µ(1− e−θ∆t) + σ

√
1− e−2θ∆t

2θ
Zn,

where Zn ∼ N (0, 1). Write code to simulate M = 5000 paths.
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(b) Implement the Euler–Maruyama scheme:

Xn+1 = Xn + θ(µ−Xn)∆t+ σ∆Wn,

with ∆Wn ∼ N (0,∆t). SimulateM = 5000 paths for ∆t = 2−4, 2−5, 2−6, 2−7.

(c) Compute the RMS error E(∆t) at T = 1 by comparing the EM solu-

tion to the exact solution for the same Brownian increments.

(d) Plot log(E(∆t)) versus log(∆t). Fit a straight line and report the

slope (empirical order). The theoretical strong order for EM is 1.0

for this SDE. Does your result match? Hint: Use a plotting library

(e.g., Matplotlib in Python) and a linear regression function to find

the slope.

Exercise 2. Geometric Brownian Motion

Consider the SDE:

dXt = rXtdt+ σXtdWt, X0 = 1, T = 1,

with r = 0.03, σ = 0.2.

(a) The exact solution is:

Xt = X0 exp

((
r − σ2

2

)
t+ σWt

)
.

Implement this solution for t = 0,∆t, 2∆t, . . . , 1. Generate Wt by

summing increments ∆Wn ∼ N (0,∆t).

(b) Implement the EM scheme:

Xn+1 = Xn + rXn∆t+ σXn∆Wn,

for M = 5000 paths and ∆t = 2−4, 2−5, 2−6, 2−7.

(c) Compute the RMS error at T = 1 using the exact solution as the

reference.

(d) Plot log(E(∆t)) versus log(∆t). Estimate the order of convergence.

The theoretical strong order is 0.5. Explain any deviations. Hint:

Ensure the same random increments are used for both the exact and

EM solutions.

Exercise 3. Nonlinear Logistic SDE

Consider the SDE:

dXt = αXt

(
1− Xt

K

)
dt+ σXtdWt, X0 = 0.5, T = 1,

3



with α = 1.5, K = 2, σ = 0.3.

(a) Since no exact solution is available, use the EM scheme with ∆tref =

2−12 as the reference. Implement EM:

Xn+1 = Xn + αXn

(
1− Xn

K

)
∆t+ σXn∆Wn,

for M = 2000 paths and ∆t = 2−4, 2−5, 2−6, 2−7.

(b) Compute E(∆t) at T = 1 using the reference solution.

(c) Plot the convergence and estimate the order. Discuss if negative values

occur in simulations and how they affect the results (since the logis-

tic model typically expects positive values). Suggest ways to handle

negative values, if observed. Hint: Check if Xn becomes negative and

consider a modification like Xn ← max(Xn, 0).

Exercise 4. Scalar Nonlinear SDE: Euler–Maruyama vs. Milstein

Consider the SDE:

dXt = (Xt −X3
t )dt+ σXtdWt, X0 = 1, σ = 0.5, T = 1.

(a) Verify the EM update:

XEM
n+1 = Xn + (Xn −X3

n)∆t+ σXn∆Wn.

Implement it for M = 2000 paths.

(b) Verify the Milstein update:

XMil
n+1 = Xn + (Xn −X3

n)∆t+ σXn∆Wn +
1

2
σ2Xn

(
(∆Wn)

2 −∆t
)
.

Implement it for M = 2000 paths. Note the extra term accounts for

the stochastic second-order effect.

(c) Use the Milstein scheme with ∆tref = 2−12 as the reference.

(d) Compute E(∆t) for both schemes and plot both errors on the same

log-log plot. Report the slopes. The theoretical orders are 0.5 for EM

and 1.0 for Milstein. Hint: The Milstein scheme includes a correction

term derived from the diffusion coefficient’s derivative.

Exercise 5. CIR-Type SDE with Square-Root Diffusion

Consider the SDE:

dXt = κ(θ −Xt)dt+ σ
√

XtdWt, X0 = 1, T = 1,

4



with κ = 2, θ = 1, σ = 0.4.

(a) Implement the EM scheme with full truncation to ensure non-negativity:

Xn+1 = Xn + κ(θ −Xn)∆t+ σ
√
max(Xn, 0)∆Wn,

Xn+1 ← max(Xn+1, 0).

Simulate M = 3000 paths.

(b) Use the same scheme with ∆tref = 2−12 as the reference.

(c) Compute the RMS error at T = 1.

(d) Plot log(E(∆t)) versus log(∆t) and estimate the convergence order.

Hint: The square-root diffusion requires careful handling to avoid

taking the square root of negative values.

Submission Instructions

Submit a report including:

• Your code (e.g., Python, MATLAB) for each exercise.

• Log-log plots for each exercise with fitted lines and reported slopes.

• Brief explanations of your results, including any issues (e.g., negative values)

and how you addressed them.

• Comparisons of observed convergence orders to theoretical values.

You may discuss with classmates, but your submission must be your own work.

Submit by July 24, 2025.
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