Exercise Sheet: Solving Black-Scholes Equations by Monte Carlo Methods

Dr. Abhishek Chaudhary

Numerical Analysis Group, Department of Mathematics, University of Tübingen

Assignment Overview

This exercise sheet explores the use of Monte Carlo simulation to solve the Black-Scholes equation for pricing European and path-dependent options. Through these exercises, you will simulate asset price paths, compute option payoffs, and analyze the accuracy of your estimates. For each exercise:

- Use the specified parameters unless otherwise noted.
- Implement your simulations in a programming language of your choice (e.g., Python, MATLAB, R).
- Submit your code, results, and plots with your solutions.

Note: For reproducibility, set a random seed when generating random numbers, especially when comparing results across different sample sizes.

Exercises

Exercise 1. Simulate Geometric Brownian Motion

Simulate M = 10,000 paths of the asset price S(T) at time T = 1 year, given the Black-Scholes SDE under the risk-neutral measure:

$$dS(t) = rS(t)dt + \sigma S(t)dW(t), \quad S(0) = S_0,$$

with parameters r = 0.05, $\sigma = 0.2$, $S_0 = 100$.

(a) Use the analytical solution:

$$S(T) = S_0 \exp\left[\left(r - \frac{\sigma^2}{2}\right)T + \sigma W(T)\right],$$

where $W(T) \sim \mathcal{N}(0,T)$. Generate $W(T) = \sqrt{T}Z$, with $Z \sim \mathcal{N}(0,1)$.

- (b) Plot a histogram of the simulated S(T) values to visualize the distribution.
- (c) Compute the sample mean and standard deviation of S(T). Compare the sample mean to the theoretical expectation S_0e^{rT} . **Hint**: S(T)follows a log-normal distribution, and its theoretical mean is S_0e^{rT} . A close match indicates a correct simulation.

Exercise 2. Monte Carlo Pricing of a European Call Option

Price a European call option with strike K = 110 and maturity T = 1 year using the simulated paths from Exercise 1.

(a) For each simulated S(T), compute the payoff:

$$\psi(S(T)) = \max(S(T) - K, 0).$$

(b) Compute the Monte Carlo estimate of the option price:

$$C_{\rm MC} = e^{-rT} \cdot \frac{1}{M} \sum_{i=1}^{M} \psi(S(T, \omega_i)).$$

- (c) Report your estimated price.
- (d) (Optional) Compare your result to the Black-Scholes formula for a European call option. Hint: Use the same S(T) paths from Exercise 1 to maintain consistency.

Exercise 3. Effect of Sample Size on Accuracy

Investigate how the number of Monte Carlo samples M affects the accuracy of the option price estimate from Exercise 2.

- (a) Repeat Exercise 2 for M = 100, 1,000, 10,000, and 100,000.
- (b) For each M:
 - Report the price estimate $C_{\rm MC}$.
 - Compute the standard error: SE = $\frac{\text{sample standard deviation of }\psi(S(T))}{\sqrt{M}}$.
- (c) Plot the estimated price with error bars (using SE) versus M on a log scale for M.

(d) Briefly explain the observed convergence and error trends. **Hint**: The standard error should decrease as $1/\sqrt{M}$, and the estimate should stabilize as M increases.

Exercise 4. Pricing a European Put Option

Price a European put option with strike K = 90, using the same parameters as in Exercise 1.

(a) For each simulated S(T), compute the put payoff:

$$\psi_{\text{put}}(S(T)) = \max(K - S(T), 0).$$

(b) Compute the Monte Carlo estimate:

$$P_{\mathrm{MC}} = e^{-rT} \cdot \frac{1}{M} \sum_{i=1}^{M} \psi_{\mathrm{put}}(S(T, \omega_i)).$$

- (c) Report your result.
- (d) (Optional) Compare your result to the Black-Scholes formula for a European put option.

Exercise 5. Path-dependent Option – Asian Call (Arithmetic Average)

Simulate and price an Asian call option with payoff based on the arithmetic average of the asset price:

$$\psi_{\text{Asian}} = \max\left(\frac{1}{N}\sum_{n=1}^{N}S(t_n) - K, 0\right),$$

where K = 100, T = 1, and N = 50 time steps.

- (a) Discretize [0, T] into N = 50 equal steps, with $\Delta t = T/N$.
- (b) For each path, simulate $S(t_n)$ at each time step using:

$$S_{n+1} = S_n \exp\left[\left(r - \frac{1}{2}\sigma^2\right)\Delta t + \sigma\sqrt{\Delta t}Z_n\right],$$

where $Z_n \sim \mathcal{N}(0, 1)$.

- (c) For each path, compute the arithmetic average $\frac{1}{N} \sum_{n=1}^{N} S(t_n)$ and the payoff ψ_{Asian} .
- (d) Estimate the option price:

$$C_{\text{Asian, MC}} = e^{-rT} \cdot \frac{1}{M} \sum_{i=1}^{M} \psi_{\text{Asian}}(\omega_i).$$

(e) Qualitatively compare the Asian option price to the European call price from Exercise 2. Which is typically higher? Why? **Hint**: Asian options depend on the path average, which is less volatile than the final price, often leading to a lower price than a European call.

Submission Instructions

Submit a report containing:

- Your code for each exercise.
- Results, plots, and comparisons as requested.
- Brief explanations of your observations, particularly for Exercises 3 and 5.

Collaboration is allowed, but your submission must be your own work. This is optional.

© 2025 Dr. Abhishek Chaudhary, Department of Mathematics, University of Tübingen