Exercise Sheet: Gradient Descent Method

Exercises

Exercise 1 (Implementation for a quadratic function). Write a program (e.g. in Matlab/Octave/Python) that implements gradient descent for the quadratic function

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x, \qquad A = \begin{pmatrix} 4 & 1\\ 1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 1\\ 2 \end{pmatrix},$$

starting from $x^{(0)} = (0,0)^{\top}$ with constant step size γ .

- 1. Derive the explicit formula for $\nabla f(x)$ and the unique minimizer x^* .
- 2. Run gradient descent for different step sizes $\gamma \in \{0.05, 0.1, 0.3, 0.6\}$ for 100 iterations. Plot $||x^{(k)} x^*||$ versus k in a semilogarithmic plot.
- 3. Based on the eigenvalues of A, determine the range of constant step sizes for which gradient descent converges and compare with your experiments.

Exercise 2 (Effect of conditioning and step size). Consider the function

$$f(x) = x_1^2 + 10x_2^2, \qquad x = (x_1, x_2)^\top \in \mathbb{R}^2.$$

- 1. Implement gradient descent with constant step size γ and starting point $x^{(0)} = (3,3)^{\top}$.
- 2. For $\gamma \in \{0.01, 0.05, 0.1, 0.2\}$, plot the iterates $x^{(k)}$ in the (x_1, x_2) -plane together with level sets of f.
- 3. Observe how the trajectory changes with γ . For which values of γ does the method converge? For which values does it diverge or oscillate strongly?
- 4. Comment on the influence of the different curvature in the two directions (the conditioning of the Hessian) on the shape of the gradient descent path.

Exercise 3 (Backtracking line search). Consider the Rosenbrock function

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2.$$

- 1. Implement gradient descent with backtracking line search: starting from a trial step size $\bar{\gamma} > 0$, decrease the step size by a factor $\beta \in (0,1)$ until the Armijo condition is satisfied. Use for instance $\bar{\gamma} = 1$, $\beta = 0.5$, and $\sigma = 10^{-4}$.
- 2. Start from $x^{(0)} = (-1.2, 1)^{\top}$ and run the method until $\|\nabla f(x^{(k)})\| \le 10^{-4}$ or a maximum number of iterations is reached. Plot $f(x^{(k)})$ versus k and the path of iterates in the plane.
- 3. Compare your results with gradient descent using a fixed step size $\gamma = 10^{-3}$ and $\gamma = 10^{-4}$. Discuss advantages and disadvantages of backtracking compared to using a fixed step size.

1

Exercise 4 (Stopping criteria and practical performance). Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by

$$f(x) = \frac{1}{2} ||Bx - d||_2^2,$$

where $B \in \mathbb{R}^{m \times n}$ and $d \in \mathbb{R}^m$ are given (you may generate B and d randomly, e.g. with independent standard normal entries).

- 1. Implement gradient descent with constant step size $\gamma = \frac{1}{\|B\|_2^2}$, where $\|B\|_2$ denotes the spectral norm (you may approximate it numerically).
- 2. Implement the following three stopping criteria:
 - (a) $\|\nabla f(x^{(k)})\| \le \varepsilon$,
 - (b) $||x^{(k)} x^{(k-1)}|| \le \varepsilon$,
 - (c) $f(x^{(k-1)}) f(x^{(k)}) \le \varepsilon$,

with $\varepsilon = 10^{-6}$.

3. For each criterion, record the number of iterations and the final value $f(x^{(k)})$ when starting from the same $x^{(0)}$. Compare the behaviour of the stopping criteria and discuss which one you would prefer in practice and why.

Exercise 5 (Gradient descent with noisy gradients). Consider again the quadratic function from Exercise 17.8. Assume that the gradient is not available exactly, but only via a noisy oracle

$$g(x) = \nabla f(x) + \xi,$$

where ξ is a random vector whose entries are independent and normally distributed with mean 0 and variance σ^2 .

1. Implement a stochastic gradient descent method

$$x^{(k+1)} = x^{(k)} - \gamma_k g(x^{(k)}),$$

with step sizes $\gamma_k = \frac{\gamma_0}{1+k}$ and some $\gamma_0 > 0$.

- 2. For different noise levels $\sigma \in \{0, 0.1, 0.5\}$ and a fixed γ_0 , run the method from the same starting point $x^{(0)}$ and plot $f(x^{(k)}) f(x^*)$ versus k (averaged over several runs).
- 3. Compare the convergence behaviour with the noise-free case ($\sigma = 0$) and discuss how noise and the choice of the decreasing step sizes influence convergence to the minimizer.