
Exercise 4: Neural Networks — Simulation Exercises

How to use this sheet (important)
Each exercise has the same structure:
1. Given data: what values to generate in Python (numbers, points, labels).

2. Model equations: how to compute predictions from parameters.

3. Loss: how to measure error.

4. Gradients: formulas you will implement to update parameters.

5. Update rule: how to update parameters in a loop.

6. What to plot/print: exactly what output is required.

Common symbols used everywhere.
• N = number of data points (samples).

• x(i) = input for sample i (a number or a vector).

• y(i) = true target/label for sample i.

• ŷ(i) = model prediction for sample i.

• η = learning rate (step size).

• k = training iteration number.

Common training rule (gradient descent). Parameters are collected into θ (weights +
biases). Training uses gradient descent:

θ(k+1) = θ(k) − η∇θJ
(
θ(k))

Recommended default settings (use unless told otherwise).
• Set random seed: np.random.seed(0)

• Use N = 200 data points when possible.

• Use K = 1000 iterations for training loops.

• Start with learning rate η = 0.1 for simple problems; reduce if loss diverges.

Exercise 1 — Neuron forward computation (no training)

1) Given data (what to create in Python)

• Choose weights w = (1,−2)⊤ and bias b = 0.5.

• Generate N random inputs x(i) ∈ R2. Example idea: each coordinate is sampled from a
standard normal distribution.

1

2) Model equations (forward pass)

For each input x(i) = (x(i)
1 , x

(i)
2)⊤ compute:

z(i) = w⊤x(i) + b = 1 · x(i)
1 + (−2) · x(i)

2 + 0.5

Then compute output:
a(i) = σ

(
z(i)

)
3) Activations to implement

Compute a(i) using each of:
• Identity: σ(z) = z

• Sigmoid: σ(z) = 1
1 + e−z

• ReLU: σ(z) = max(0, z)

4) What to plot/print

• Print a small table for the first 10 samples: (x1, x2, z, a) for each activation.

• Make 3 histograms (one for each activation) showing the distribution of a(i).

Exercise 2 — Activation shapes and derivatives (no training)

1) Given data

Create a grid of z values from −6 to 6 (many points, e.g. 1000).

2) Compute activation values

Compute:

• Sigmoid: σ(z) = 1
1 + e−z

• Tanh: tanh(z) = ez − e−z

ez + e−z

• ReLU: ReLU(z) = max(0, z)

3) Compute derivatives (slopes)

Compute:
• Sigmoid slope: σ′(z) = σ(z)

(
1− σ(z)

)
• Tanh slope: (tanh z)′ = 1− tanh2(z)

• ReLU slope:

ReLU′(z) =
{

0, z < 0,

1, z > 0.

(At z = 0 you may choose either 0 or 1; it does not matter for plots.)

2

4) What to plot/print

• Plot 1: σ(z) curves (sigmoid, tanh, ReLU) on the same figure.

• Plot 2: derivative curves on the same figure.

• Print one sentence: where do gradients become small for sigmoid or tanh?

Exercise 3 — Regression with one neuron (learn a straight line)

1) Given data

• Generate N input scalars x(i) ∈ R (e.g. uniformly in [−2, 2]).

• Create targets:
y(i) = 2x(i) + 1 + ε(i)

where ε(i) is small noise (e.g. normal noise with standard deviation 0.1).

2) Model

ŷ(i) = wx(i) + b

Parameters to learn: w and b.

3) Loss (mean squared error)

J(w, b) = 1
N

N∑
i=1

(
ŷ(i) − y(i)

)2

4) Gradients

Let e(i) = ŷ(i) − y(i).
∂J

∂w
= 2

N

N∑
i=1

e(i)x(i),
∂J

∂b
= 2

N

N∑
i=1

e(i)

5) Update rule (training loop)

Initialize w = 0, b = 0. For k = 0, 1, . . . , K − 1:
1. Compute all predictions ŷ(i).

2. Compute loss J(w, b) and store it.

3. Compute gradients ∂J/∂w, ∂J/∂b.

4. Update w, b using learning rate η.

6) What to plot/print

• Plot loss J vs iteration k.

• Plot data points (x(i), y(i)) and the final fitted line ŷ = wx + b.

• Print final w, b and compare to (2, 1).

3

Exercise 4 — Binary classification with one neuron (sigmoid)

1) Given data

• Generate N/2 points near (−2,−2) and label them 0.

• Generate N/2 points near (2, 2) and label them 1.

• Store all points in X ∈ RN×2 and labels in y ∈ {0, 1}N .

2) Model

For each sample:
z(i) = w⊤x(i) + b, p(i) = σ(z(i)) = 1

1 + e−z(i)

Interpretation: p(i) is the predicted probability of class 1.

3) Loss (cross-entropy)

J(w, b) = − 1
N

N∑
i=1

[
y(i) log p(i) + (1− y(i)) log(1− p(i))

]
Important for coding: use a small ε to avoid log(0).

4) Gradients

∂J

∂w
= 1

N

N∑
i=1

(p(i) − y(i))x(i),
∂J

∂b
= 1

N

N∑
i=1

(p(i) − y(i))

5) Update rule (training loop)

Initialize w = (0, 0) and b = 0. For k = 0, 1, . . . , K − 1:
1. Compute z(i) for all points.

2. Compute probabilities p(i).

3. Compute loss J(w, b) and store it.

4. Compute gradients and update w, b.

6) Prediction rule and accuracy

ŷ(i) = 1p(i)≥0.5, accuracy = 1
N

N∑
i=1

1ŷ(i)=y(i)

7) What to plot/print (very explicit instructions)

• (A) Plot loss vs iteration (one curve).
During training you run a loop for k = 0, 1, . . . , K − 1. At each iteration:

1. Compute probabilities p(i) for all training points using

p(i) = σ
(
w⊤x(i) + b

)
= 1

1 + e−(w⊤x(i)+b)
.

4

2. Compute the cross-entropy loss

J (k) = − 1
N

N∑
i=1

[
y(i) log p(i) + (1− y(i)) log(1− p(i))

]
.

3. Store the value J (k) in a list/array.

After training, plot the stored values J (k) (vertical axis) against iteration number k (horizontal
axis). The loss should usually decrease.

• (B) Plot the dataset points (scatter plot).
Make a 2D scatter plot in the (x1, x2) plane:

– Plot all class 0 points (where y(i) = 0) using one marker/color.
– Plot all class 1 points (where y(i) = 1) using a different marker/color.

Add a legend showing which marker/color corresponds to class 0 and class 1.

• (C) Plot the decision boundary line on the same figure.
After training finishes, you have final parameters (w, b) with w = (w1, w2)⊤. The decision
boundary is the set of points x = (x1, x2) such that

w⊤x + b = 0.

To draw it as a line on your plot:

1. Choose a range of x1 values covering your data (for example from mini x
(i)
1 to maxi x

(i)
1).

2. For each chosen x1, compute the corresponding x2 value:

x2 = −w1
w2

x1 −
b

w2
(only if w2 ̸= 0).

3. Plot the curve (x1, x2) as a line over the scatter plot.

Special case: if w2 = 0, the boundary is a vertical line:

w1x1 + b = 0 ⇒ x1 = − b

w1
.

Plot this vertical line instead.

• (D) Print final accuracy (one number).
After training, compute for each training point the predicted probability p(i) and convert it
into a predicted class using threshold 0.5:

ŷ(i) =
{

1 if p(i) ≥ 0.5,

0 if p(i) < 0.5.

Then compute accuracy:

accuracy = 1
N

N∑
i=1

1ŷ(i)=y(i) .

Print this accuracy value (example: accuracy = 0.95).

5

Exercise 5 — 1-hidden-layer regression network (tanh)

1) Given data

Generate inputs x(i) ∈ [−2, 2] and targets:

y(i) = sin(3x(i)) + ε(i)

2) Model (1 → L → 1)

Parameters:
W1 ∈ R1×L, b1 ∈ R1×L, W2 ∈ RL×1, b2 ∈ R.

Forward:
z1 = xW1 + b1, h = tanh(z1), ŷ = hW2 + b2

3) Loss

J = 1
N

∑
(ŷ − y)2

4) Gradients (use directly)

Define:
dŷ = 2

N
(ŷ − y)

Then:
∂J

∂W2
= h⊤dŷ,

∂J

∂b2
=

∑
dŷ

dh = dŷ W ⊤
2 , dz1 = dh⊙ (1− h2)

∂J

∂W1
= x⊤dz1,

∂J

∂b1
=

∑
dz1

5) Update rule

Initialize parameters with small random values and train for K iterations using learning rate η.

6) What to plot/print

• Plot true function y = sin(3x) and learned prediction ŷ.

• Plot loss J vs iteration.

• Repeat for L = 5 and L = 20 and compare.

Exercise 6 — Same network but ReLU hidden layer

1) Given data (what to create in Python)

Use the same dataset as in Exercise 5.
• Choose N input points on an interval, for example

x(i) ∈ [−2, 2], i = 1, . . . , N,

(you can take equally spaced points).

6

• Create target outputs using
y(i) = sin

(
3x(i)) + ε(i),

where ε(i) is a small noise term (optional; you may also set ε(i) = 0).

2) Model (network structure: 1 → L → 1)

This is the same architecture as Exercise 5: one hidden layer with L neurons and one output
neuron.

Parameters (what you must store and update).
• W1 ∈ R1×L (weights from input to hidden layer)

• b1 ∈ R1×L (biases of hidden layer)

• W2 ∈ RL×1 (weights from hidden layer to output)

• b2 ∈ R (bias of output layer)

Forward pass (compute prediction ŷ). For all input points x (as a column vector of shape
N × 1):

z1 = xW1 + 1b1 ∈ RN×L,

h = ReLU(z1) = max(0, z1) ∈ RN×L,

ŷ = hW2 + 1b2 ∈ RN×1.

Here 1 is the N × 1 vector of ones (used to add the bias to every row).

3) Loss (what you minimize)

Use Mean Squared Error (MSE), same as Exercise 5:

J = 1
N

N∑
i=1

(
ŷ(i) − y(i)

)2
.

4) Gradients (formulas you implement to update parameters)

Step 1: derivative of loss w.r.t. output. Define the vector

dŷ = ∂J

∂ŷ
= 2

N
(ŷ − y) ∈ RN×1.

Step 2: gradients for the output layer (W2, b2).

∂J

∂W2
= h⊤dŷ ∈ RL×1,

∂J

∂b2
=

N∑
i=1

dŷ(i) ∈ R.

Step 3: pass gradient back to hidden layer output h.

dh = dŷ W ⊤
2 ∈ RN×L.

7

Step 4: ReLU derivative to get gradient w.r.t. z1. ReLU is h = max(0, z1), so its
derivative is:

∂h

∂z1
= 1z1>0

(elementwise). Therefore:
dz1 = dh⊙ 1z1>0 ∈ RN×L,

where ⊙ means elementwise multiplication, and 1z1>0 is a matrix with entries

(1z1>0)ij =
{

1 if (z1)ij > 0,

0 if (z1)ij ≤ 0.

Step 5: gradients for the hidden layer (W1, b1).

∂J

∂W1
= x⊤dz1 ∈ R1×L,

∂J

∂b1
=

N∑
i=1

(dz1)i,: ∈ R1×L.

(Here (dz1)i,: means the i-th row of dz1.)

5) Update rule (what you do in the training loop)

Choose a learning rate η > 0 and number of iterations K (for example, η = 0.01 and K = 5000).
Initialize W1, W2 with small random values and b1, b2 with zeros.

For each iteration k = 0, 1, . . . , K − 1:
1. Compute forward pass: z1, h, ŷ.

2. Compute loss J and store it in a list (for plotting).

3. Compute gradients using the formulas in Section 4.

4. Update parameters (gradient descent):

W1 ←W1 − η
∂J

∂W1
, b1 ← b1 − η

∂J

∂b1
,

W2 ←W2 − η
∂J

∂W2
, b2 ← b2 − η

∂J

∂b2
.

6) What to plot/print (clear deliverables)

• Plot the learned curve: after training, plot the target function y = sin(3x) (using the
same x points) and on the same figure plot your network prediction ŷ.

• Plot the loss curve: plot the stored loss values J (k) versus iteration k.

• Compare with Exercise 5: use the same dataset, the same hidden width L, and similar
learning rate. Write 2–3 lines describing which activation (tanh vs ReLU) gave a better fit
or faster decrease of the loss.

7) Recommended settings (to avoid confusion)

• Use N = 200 points, equally spaced in [−2, 2].

• Start with hidden width L = 20 (then try L = 5).

• Initialize weights with small random numbers (for example scale 0.1).

• Use K = 5000 iterations.

• Try learning rate η = 0.01 first. If loss explodes (increases a lot), reduce η to 0.001.

8

Exercise 7 — XOR with a small network (2 → 2 → 1)

1) Given data

Use four XOR points and labels:

(0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1, (1, 1) 7→ 0.

2) Model

Hidden:
z1 = XW1 + b1, h = tanh(z1)

Output:
z2 = hW2 + b2, p = σ(z2)

3) Loss (cross-entropy)

J = − 1
N

∑
[y log p + (1− y) log(1− p)]

4) Gradients (use directly)

Key shortcut:
∂J

∂z2
= 1

N
(p− y)

Then:
∂J

∂W2
= h⊤ ∂J

∂z2
,

∂J

∂b2
=

∑ ∂J

∂z2

dh = ∂J

∂z2
W ⊤

2 , dz1 = dh⊙ (1− h2)

∂J

∂W1
= X⊤dz1,

∂J

∂b1
=

∑
dz1

5) What to plot/print (very explicit instructions)

• (A) Print predicted probabilities for the 4 XOR points.
Use the four input points

(0, 0), (0, 1), (1, 0), (1, 1).

After training is finished, compute the network output for each point step-by-step:

z1 = xW1 + b1, h = tanh(z1),

z2 = hW2 + b2, p = σ(z2) = 1
1 + e−z2

.

Here p ∈ (0, 1) is the predicted probability of class 1 (label 1). Print a small table like:

x = (0, 0)⇒ p = . . . , x = (0, 1)⇒ p = . . . , x = (1, 0)⇒ p = . . . , x = (1, 1)⇒ p = . . .

Expected: for true label 1, p should be close to 1 (e.g. > 0.9), and for true label 0, p should
be close to 0 (e.g. < 0.1).

9

• (B) Print accuracy (one number).
Convert each probability p(i) into a predicted class using threshold 0.5:

ŷ(i) =
{

1 if p(i) ≥ 0.5,

0 if p(i) < 0.5.

Then compute accuracy:

accuracy = 1
N

N∑
i=1

1ŷ(i)=y(i) ,

where 1ŷ(i)=y(i) equals 1 if the prediction is correct and 0 otherwise. Print the final accuracy
as a number between 0 and 1 (example: accuracy = 1.00).
Note: If you train only on the 4 XOR points (so N = 4), then accuracy = 1.00 means you
classified all four points correctly.

• (C) Plot loss vs iteration (one curve).
During training, at every iteration k = 0, 1, . . . , K − 1, compute the cross-entropy loss using
the current network outputs p(i):

J (k) = − 1
N

N∑
i=1

[
y(i) log(p(i)) + (1− y(i)) log(1− p(i))

]
.

Store J (0), J (1), . . . , J (K−1) in a list/array and plot J (k) (vertical axis) against the iteration
number k (horizontal axis). The curve should usually decrease during training.

Exercise 8 — Check your gradients (numerical vs analytic)

Given

Choose Exercise 5 or 7.

Numerical gradient

Pick one parameter value θ and small δ = 10−5:

gnum = J(θ + δ)− J(θ − δ)
2δ

Compare

Let gbp be your gradient formula result:

rel_err = |gbp − gnum|
|gbp|+ |gnum|

What to print

Print gbp, gnum, and rel_err. If rel_err is large, your gradients likely contain a mistake.

Exercise 9 — Learning rate experiment

Given

Use Exercise 3 or Exercise 5.

10

Task

Train the same model three times with:

η ∈ {0.001, 0.01, 0.1}

What to plot/print

• Plot loss vs iteration for all three learning rates on the same graph.

• Explain in 2–3 lines: which learning rate is too small (slow) and which is too large (unstable).

Exercise 10 — 3-class softmax classifier (linear)

1) Given data

Generate 3 clusters in R2 and labels y(i) ∈ {0, 1, 2}.

2) Model

Parameters: W ∈ R2×3, b ∈ R3.
Scores:

S = XW + 1b⊤

Softmax:
Pik = eSik∑3

j=1 eSij

One-hot labels Y :
Yik = 1 if yi = k, else 0.

3) Loss

J = − 1
N

N∑
i=1

3∑
k=1

Yik log(Pik)

4) Gradients
∂J

∂S
= 1

N
(P − Y)

∇W J = X⊤ ∂J

∂S
, ∇bJ =

N∑
i=1

(
∂J

∂S

)
i,:

5) Prediction

ŷ(i) = arg max
k

Pik

11

6) What to plot/print (very explicit instructions)

• (A) Print training accuracy (one number).
After training, for each data point x(i) compute the softmax probabilities Pi0, Pi1, Pi2. Then
predict the class as the index of the largest probability:

ŷ(i) = arg max
k∈{0,1,2}

Pik.

Count how many predictions are correct and divide by N :

accuracy = 1
N

N∑
i=1

1ŷ(i)=y(i) .

Print this accuracy value (for example: accuracy = 0.93).

• (B) Plot loss vs iteration (one curve).
During training, at every iteration k = 0, 1, . . . , K − 1, compute the cross-entropy loss

J (k) = − 1
N

N∑
i=1

2∑
m=0

Yim log(Pim),

using the current parameters W (k), b(k). Store the values J (0), J (1), . . . , J (K−1) in a list/array.
Plot the stored loss values on the vertical axis versus the iteration number k on the horizontal
axis. The curve should usually go down.

• (C) Plot decision regions (a colored background showing predicted class).
This plot shows which class the model would predict at every location in the plane. Follow
these steps:

1. Find the minimum and maximum of the data coordinates:

xmin
1 , xmax

1 and xmin
2 , xmax

2 .

Add a small margin (for example ±1) so the plot has space around the data.
2. Create a grid of points covering that rectangle. For example, create 200 equally spaced

values between xmin
1 −1 and xmax

1 +1, and 200 equally spaced values between xmin
2 −1 and

xmax
2 + 1. Each grid location is one 2D point x̃ = (x̃1, x̃2).

3. For each grid point x̃, compute its scores and softmax probabilities:

s̃ = x̃⊤W + b⊤, p̃k = es̃k∑2
j=0 es̃j

.

Predict the class:
ỹ = arg max

k∈{0,1,2}
p̃k.

4. Color the background according to ỹ (three colors: one for each class).
5. On top of this colored background, plot the original training points x(i) using mark-

ers/colors according to their true labels y(i).

Result: you will see three colored regions separated by boundaries. Those boundaries are
where the predicted class changes.

12

