Exercise 4: Neural Networks — Simulation Exercises

How to use this sheet (important)

Each exercise has the same structure:

1. Given data: what values to generate in Python (numbers, points, labels).
. Model equations: how to compute predictions from parameters.
. Loss: how to measure error.

2
3
4. Gradients: formulas you will implement to update parameters.
5. Update rule: how to update parameters in a loop.

6

. What to plot/print: exactly what output is required.

Common symbols used everywhere.

e N = number of data points (samples).

« 2 = input for sample i (a number or a vector).
e 3D = true target /label for sample 1.

e §) = model prediction for sample i.

o 7 = learning rate (step size).

e k = training iteration number.

Common training rule (gradient descent). Parameters are collected into § (weights +
biases). Training uses gradient descent:

p(k+1) — g(k) _ TIVQJ(Q(k))

Recommended default settings (use unless told otherwise).

o Set random seed: np.random.seed(0)
e Use N = 200 data points when possible.
e Use K = 1000 iterations for training loops.

e Start with learning rate n = 0.1 for simple problems; reduce if loss diverges.

Exercise 1 — Neuron forward computation (no training)
1) Given data (what to create in Python)
+ Choose weights w = (1, —2)" and bias b = 0.5.

o Generate N random inputs z() € R2. Example idea: each coordinate is sampled from a
standard normal distribution.



2) Model equations (forward pass)

For each input z(®) = ( gi),a:éi))—r compute:

20 = z®4p=1. xgi) +(-2)- :cgi) +0.5

Then compute output:

o) = ()

3) Activations to implement

Compute a(? using each of:

o Identity: o(z) =z

B 1
1+e*

o ReLU: o(z) = max(0, 2)

o Sigmoid: o(z)

4) What to plot/print
o Print a small table for the first 10 samples: (x1, 22, z,a) for each activation.

+ Make 3 histograms (one for each activation) showing the distribution of a(.

Exercise 2 — Activation shapes and derivatives (no training)

1) Given data

Create a grid of z values from —6 to 6 (many points, e.g. 1000).

2) Compute activation values

Compute:
1
o Si id: =
igmoid: o(2) e
z_ o=z
o Tanh: tanh(z) = S
e? +e %

o ReLU: ReLU(z) = max(0, z)

3) Compute derivatives (slopes)
Compute:

« Sigmoid slope: ¢/(z) = 0(2)(1 — o(2))
o Tanh slope: (tanhz)’ = 1 — tanh?(2)

¢ ReLU slope:
0, z<0,
1, z>0.

ReLU'(z) = {

(At z = 0 you may choose either 0 or 1; it does not matter for plots.)



4) What to plot/print
o Plot 1: o(z) curves (sigmoid, tanh, ReLU) on the same figure.
e Plot 2: derivative curves on the same figure.

o Print one sentence: where do gradients become small for sigmoid or tanh?

Exercise 3 — Regression with one neuron (learn a straight line)

1) Given data
o Cenerate N input scalars £ € R (e.g. uniformly in [—2,2]).

¢ Create targets:

where £(?) is small noise (e.g. normal noise with standard deviation 0.1).

2) Model
3D = w4 b

Parameters to learn: w and b.

3) Loss (mean squared error)

Ty = L3 (50 - 0
=1

4) Gradients

8 2L o o 2
9T _ 25 g, 90 250
dw Ngex’ ab N;e

5) Update rule (training loop)

Initialize w =0, b=0. For k=0,1,..., K — 1:
1. Compute all predictions §(¥).

2. Compute loss J(w,b) and store it.
3. Compute gradients 0.JJ/0w, 0.J/0b.

4. Update w, b using learning rate 7.

6) What to plot/print
o Plot loss J vs iteration k.
« Plot data points (z(?,5)) and the final fitted line § = wx + b.

o Print final w, b and compare to (2,1).




Exercise 4 — Binary classification with one neuron (sigmoid)

1) Given data
o Generate N/2 points near (—2,—2) and label them 0.
o Generate N/2 points near (2,2) and label them 1.

e Store all points in X € RV*2 and labels in y € {0, 1}.

2) Model

For each sample:
1

14 e2?
Interpretation: p(® is the predicted probability of class 1.

3) Loss (cross-entropy)

N
J(w,b) = =+ 3 [y log p + (1 =y D) log(1 — p)]

1
N =1

Important for coding: use a small € to avoid log(0).

4) Gradients

5) Update rule (training loop)

Initialize w = (0,0) and b=0. For k =0,1,..., K — 1:
1. Compute z(® for all points.

2. Compute probabilities p®.
3. Compute loss J(w,b) and store it.

4. Compute gradients and update w, b.

6) Prediction rule and accuracy

v 1
y(l) = lp(i)20.57 accuracy = N Z 1g(i):y(i)
i=1

7) What to plot/print (very explicit instructions)

e (A) Plot loss vs iteration (one curve).
During training you run a loop for £k =0,1,..., K — 1. At each iteration:

1. Compute probabilities p( for all training points using

) . 1
(1) — T .(9) _
p\W = O'(’LU v+ b) R P rOTE




2. Compute the cross-entropy loss

JHR) —

1 i i i i
—N;ﬂb”k%ﬂ)+ﬂ—y”ﬂ%ﬂ—p”ﬂ-
3. Store the value J*) in a list/array.

After training, plot the stored values J*) (vertical axis) against iteration number k (horizontal
axis). The loss should usually decrease.

(B) Plot the dataset points (scatter plot).
Make a 2D scatter plot in the (z1,z2) plane:

— Plot all class 0 points (where y*) = 0) using one marker/color.

— Plot all class 1 points (where y(*) = 1) using a different marker /color.
Add a legend showing which marker/color corresponds to class 0 and class 1.

(C) Plot the decision boundary line on the same figure.
After training finishes, you have final parameters (w,b) with w = (w1, w2)". The decision
boundary is the set of points x = (z1, z2) such that

w'z+b=0.

To draw it as a line on your plot:

(%) (4)

1. Choose a range of x; values covering your data (for example from min; z;’ to max; zy’).

2. For each chosen x1, compute the corresponding =5 value:
b .
Tog=——2T] — — (only if wy # 0).

3. Plot the curve (x1,z2) as a line over the scatter plot.
Special case: if wy = 0, the boundary is a vertical line:

b
wir;+b=0 = 1 =——.
w1

Plot this vertical line instead.

(D) Print final accuracy (one number).
After training, compute for each training point the predicted probability p(*) and convert it
into a predicted class using threshold 0.5:

Y= ;
0 if p® <0.5.

Then compute accuracy:
1N
accuracy = N Z lg(i):y(i).
i=1

Print this accuracy value (example: accuracy = 0.95).




Exercise 5 — 1-hidden-layer regression network (tanh)

1) Given data

Generate inputs z(?) € [—2,2] and targets:
y @ =sin(32) 4+ @

2) Model (1 - L — 1)

Parameters:
Wy € RIXL, by € RIXL, Wy € RLXI, by € R.
Forward:
z1=zWi1+bi, h= tanh(zl), 7= hWsy + by
3) Loss
1 N 2
J = N Z(y —y)
4) Gradients (use directly)
Define: 5
dj = —(§ —
1=~y
Then:

0J 0J
Y thA Y di
Wy T 2. dj

dh=dgWy,  dz =dho(1—h%
aJ 1 a.J
= —aldy, —=Y4d
oy = A gy = 2 da
5) Update rule

Initialize parameters with small random values and train for K iterations using learning rate 7.

6) What to plot/print
o Plot true function y = sin(3z) and learned prediction 3.
o Plot loss J vs iteration.

e Repeat for L =5 and L = 20 and compare.

Exercise 6 — Same network but ReLU hidden layer

1) Given data (what to create in Python)

Use the same dataset as in Exercise 5.

e Choose N input points on an interval, for example
e e[-2,2], i=1,...,N,

(you can take equally spaced points).



o Create target outputs using ' ' 4
y @ = sin(3z9)) 4 O,

where £() is a small noise term (optional; you may also set () = 0).

2) Model (network structure: 1 — L — 1)
This is the same architecture as Exercise 5: one hidden layer with L neurons and one output

neuron.

Parameters (what you must store and update).
o Wi € RYF (weights from input to hidden layer)

o by € RIXL (biases of hidden layer)

o Wy € RE%! (weights from hidden layer to output)

o by € R (bias of output layer)

Forward pass (compute prediction ). For all input points x (as a column vector of shape

N x 1):
z1=zWi1+1by € RNXL,

h = ReLU(z) = max(0,2) € RV*L,
§=hWy+1by €RVL

Here 1 is the N x 1 vector of ones (used to add the bias to every row).

3) Loss (what you minimize)

Use Mean Squared Error (MSE), same as Exercise 5:

4) Gradients (formulas you implement to update parameters)
Step 1: derivative of loss w.r.t. output. Define the vector

o] 2
=—(g—y) eRV¥L

W=35"N

Step 2: gradients for the output layer (Ws,bs).

oJ
— th ~ RL x1
oW, Yy € )

oJ

- (4)

i=1
Step 3: pass gradient back to hidden layer output h.

dh=dywy e RN*E,



Step 4: ReLU derivative to get gradient w.r.t. z;. ReLU is h = max(0, z1), so its
derivative is:

oh
87,21 = 121>0
(elementwise). Therefore:
dz1 =dh©®1,50 € RNXL,

where ® means elementwise multiplication, and 1,50 is a matrix with entries

(1250)i = {

1 if (Zl)ij > 0,

Step 5: gradients for the hidden layer (W7y,b;).

] ¢ o 0] & XL
9 2T RIX 2L _S (dn)i € RV*E
o, ¢ € TS (dz1)i: €

i=1
(Here (dz1);. means the i-th row of dz;.)

5) Update rule (what you do in the training loop)

Choose a learning rate n > 0 and number of iterations K (for example, n = 0.01 and K = 5000).
Initialize Wy, Wy with small random values and by, by with zeros.
For each iteration £k =0,1,..., K — 1:

. Compute forward pass: z1, h, 9.

—_

2. Compute loss J and store it in a list (for plotting).
3. Compute gradients using the formulas in Section 4.
4. Update parameters (gradient descent):

oJ aJ

Wi« Wi—n——, b by — 1 —

1< 1 n awla 1< 01 n abla

oJ aJ

Wo = Wo —n o, ba<by— .

2 21 oWy’ 2 21 by

6) What to plot/print (clear deliverables)

o Plot the learned curve: after training, plot the target function y = sin(3z) (using the
same z points) and on the same figure plot your network prediction g.

« Plot the loss curve: plot the stored loss values J*) versus iteration k.

¢ Compare with Exercise 5: use the same dataset, the same hidden width L, and similar
learning rate. Write 2—-3 lines describing which activation (tanh vs ReLU) gave a better fit
or faster decrease of the loss.

7) Recommended settings (to avoid confusion)

o Use N = 200 points, equally spaced in [—2,2].

o Start with hidden width L = 20 (then try L = 5).

o Initialize weights with small random numbers (for example scale 0.1).

o Use K = 5000 iterations.

o Try learning rate n = 0.01 first. If loss explodes (increases a lot), reduce n to 0.001.




Exercise 7 — XOR with a small network (2 -+ 2 — 1)

1) Given data
Use four XOR points and labels:

(0,0) 0, (0,1) 1, (1,0) 1, (1,1) —~ 0.

2) Model

Hidden:
z21=XWi1+b, h= tanh(zl)

Output:
2o =hWa+bs, p=0(2)

3) Loss (cross-entropy)

J = —% > lylogp+ (1 —y)log(l —p)]

4) Gradients (use directly)

Key shortcut:
9J _ i( — )
822 N N P y

Then: a7 a7 aJ a7
_ hTi _ Z

8W2 - ({92’2’ 87172 B 82’2
dh = QWJ, dzy = dh ® (1 — h?)
82’2

5) What to plot/print (very explicit instructions)

e (A) Print predicted probabilities for the 4 XOR points.
( p p p
Use the four input points
(0,0), (0,1), (1,0), (1,1).

After training is finished, compute the network output for each point step-by-step:
z1 = W1 + by, h = tanh(z),

1
14+e 2’
Here p € (0,1) is the predicted probability of class 1 (label 1). Print a small table like:

ZQZhW2+b2, p:O'(ZQ):

z=(0,00=p=..., z=(0,1)=p=..., z=(1,0)=p=..., z=(L,1)=p=...

Expected: for true label 1, p should be close to 1 (e.g. > 0.9), and for true label 0, p should
be close to 0 (e.g. < 0.1).



e (B) Print accuracy (one number).
Convert each probability p(@ into a predicted class using threshold 0.5:

Y= .
0 if p® <0.5.

Then compute accuracy:
1N
accuracy = N Z L=y
i=1

where 1,0:)_, @) equals 1 if the prediction is correct and 0 otherwise. Print the final accuracy
as a number between 0 and 1 (example: accuracy = 1.00).

Note: If you train only on the 4 XOR points (so N = 4), then accuracy = 1.00 means you
classified all four points correctly.

e (C) Plot loss vs iteration (one curve).
During training, at every iteration £ =0,1,..., K — 1, compute the cross-entropy loss using
the current network outputs p(:

1 Mo . . .
T8 = =53 [y 1og(r?) + (1 y@) log(1 — p)).
=1

Store J©, JW . JE=1) in a list/array and plot J*) (vertical axis) against the iteration
number £ (horizontal axis). The curve should usually decrease during training.

Exercise 8 — Check your gradients (numerical vs analytic)

Given

Choose Exercise 5 or 7.

Numerical gradient

Pick one parameter value # and small § = 107°:

_J(O+6)—J(O—9)
gnum* 25

Compare

Let g, be your gradient formula result:

’gbp - gnum|

rel e;r = —————
|gbp| + [gnum|

What to print

Print gup, gnum, and rel_err. If rel err is large, your gradients likely contain a mistake.

Exercise 9 — Learning rate experiment

Given

Use Exercise 3 or Exercise 5.

10



Task

Train the same model three times with:
n € {0.001, 0.01, 0.1}
What to plot/print

e Plot loss vs iteration for all three learning rates on the same graph.

o Explain in 2-3 lines: which learning rate is too small (slow) and which is too large (unstable).

Exercise 10 — 3-class softmax classifier (linear)

1) Given data
Generate 3 clusters in R? and labels y® € {0,1,2}.

2) Model
Parameters: W € R?*3, b € R3.
Scores:
S=XW+1b"
Softmax:
P eSik
ik — ?:1 eSij

One-hot labels Y:
Yie. = 1ify; =k, else 0.

3) Loss
L N3
J = N > Yiglog(Pi)
i=1 k=1
4) Gradients
aJ 1
95 ~ NV
8J N rag
=Xx=Z = i
Vi J 55" Vo ;<as)

5) Prediction

gj(i) = arg m]?x P

11



6) What to plot/print (very explicit instructions)

e (A) Print training accuracy (one number).
After training, for each data point (¥ compute the softmax probabilities Pjy, P;1, Pa. Then
predict the class as the index of the largest probability:

7)) — arg max Pj.
Y gke{0,1,2} ik

Count how many predictions are correct and divide by V:
1N
accuracy = N 2:1 Ly =y
1=

Print this accuracy value (for example: accuracy = 0.93).

« (B) Plot loss vs iteration (one curve).
During training, at every iteration k =0,1,..., K — 1, compute the cross-entropy loss

J<k>——i§:iy 10g(Pim)
- N m g wm )

=1 m=0

using the current parameters W*) () Store the values J@, J1) . JE-D iy list /array.
Plot the stored loss values on the vertical axis versus the iteration number k on the horizontal
axis. The curve should usually go down.

e (C) Plot decision regions (a colored background showing predicted class).
This plot shows which class the model would predict at every location in the plane. Follow
these steps:

1. Find the minimum and maximum of the data coordinates:

xrlmn’ :L,Ilnax and 1},1211111’ $12nax

Add a small margin (for example £1) so the plot has space around the data.

2. Create a grid of points covering that rectangle. For example, create 200 equally spaced
min min

values between "™ —1 and z7"** +1, and 200 equally spaced values between x5"" —1 and
x®* 4+ 1. Each grid location is one 2D point & = (%1, Z2).

3. For each grid point Z, compute its scores and softmax probabilities:

T T e
Zj:o e’

Predict the class:
J = arg max
Y & ke{0,1,2}
4. Color the background according to § (three colors: one for each class).

5. On top of this colored background, plot the original training points z(? using mark-
ers/colors according to their true labels y(®.

Result: you will see three colored regions separated by boundaries. Those boundaries are
where the predicted class changes.
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