6. Übungsblatt zur Analysis II

Aufgabe 31: Es sei $F(r,\theta) = f(r\cos\theta, r\sin\theta)$, wobei $f: \mathbb{R}^2 \to \mathbb{R}$ differenzierbar sei. Berechnen Sie

$$\frac{\partial F}{\partial r}(r,\theta)$$
 und $\frac{\partial F}{\partial \theta}(r,\theta)$

und zeigen Sie, daß

$$\left(\frac{\partial f}{\partial x_1}(r\cos\theta,r\sin\theta)\right)^2 + \left(\frac{\partial f}{\partial x_2}(r\cos\theta,r\sin\theta)\right)^2 = \left(\frac{\partial F}{\partial r}(r,\theta)\right)^2 + \frac{1}{r^2}\left(\frac{\partial F}{\partial \theta}(r,\theta)\right)^2 \ .$$

Aufgabe 32: Für die differenzierbaren Funktionen $p,q:\mathbb{R}\to\mathbb{R}^n$ und $H:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ gelte

(*)
$$\dot{p}_k(t) = -\frac{\partial H}{\partial q_k}(p(t), q(t))$$
, $\dot{q}_k(t) = +\frac{\partial H}{\partial p_k}(p(t), q(t))$ $(k = 1, \dots, n)$

für alle $t \in \mathbb{R}$. Zeigen Sie, daß H(p(t), q(t)) einen konstanten Wert unabhängig von t annimmt.

Bemerkung: Die Hamilton' Gleichungen (*) bestimmen die Bewegung eines mechanischen Systems mit Positionen q(t) und Impulsen p(t) zur Zeit t. Die Gesamtenergie H(p(t), q(t)) bleibt dabei erhalten.

Aufgabe 33: Sei $f: \mathbb{R} \to \mathbb{R}^2$ gegeben durch $f(t) = (\cos t, \sin t)^T$. Zeigen Sie, daß mit $a = 0, b = 2\pi$ für alle $\xi \in \mathbb{R}$ gilt:

$$f(b) - f(a) \neq f'(\xi)(b - a) .$$

Aufgabe 34: (Matrizennormen) Zeigen Sie zunächst für $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ folgende Ungleichungen:

- (i) $||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$ (maximale Spaltenbetragssumme) $||A||_{\infty} = ||A^T||_1 = \max_{i=1,\dots,m} \sum_{j=1}^n |a_{ij}|$ (maximale Zeilenbetragssumme)
- (ii) $||A||_2 \le \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$ $||A||_2 \le \sqrt{||A||_1 ||A||_\infty}$
- (iii) $||A||_2 = \sqrt{\text{größter Eigenwert von } A^T A}$

Zeigen Sie dann für $A,B\in\mathbb{R}^{n\times n}$ und jede Matrixnorm die Ungleichung

$$||AB|| \le ||A|| ||B||.$$

Hinweise: zu (ii) Cauchy-Schwarz; $\|x\|_2^2 \leq \|x\|_1 \|x\|_{\infty}$ für $x \in \mathbb{R}^n$ zu (iii) Diagonalisierung $A^TA = Q^TDQ$ mit Orthogonalmatrix Q.

Aufgabe 35: Seien a > 0 und die Funktion $f: D \subset \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{a}{1+a} \left(x + \frac{a}{x} \right)$. Finden Sie den größten Definitionsbereich D, sodaß der Banach' Fixpunktsatz für jedes abgeschlossene $A \subset D$ anwendbar ist.

Aufgabe 36: Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ eine Kontraktion und $g: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar mit beschränkter Ableitung. Zeigen Sie, daß für betragsmäßig hinreichend kleines $\varepsilon \in \mathbb{R}$ auch $f + \varepsilon g$ eine Kontraktion ist. Zeigen Sie für die Differenz der Fixpunkte x^* von f und x_{ε}^* von $f + \varepsilon g$, daß

$$||x_{\varepsilon}^* - x^*|| \le \frac{\varepsilon}{1 - \alpha} ||g(x_{\varepsilon}^*)||$$
 , $||x_{\varepsilon}^* - x^*|| \le \frac{\varepsilon}{1 - \alpha - \varepsilon M} ||g(x^*)||$.

wobei $\alpha < 1$ die Lipschitz-Konstante von f bezeichnet und M eine Schranke für die Ableitung von g. Hinweis zur Ungleichung: Betrachten Sie die Fixpunktiteration von f mit Startwert x_{ε}^* bzw x^* .