5. Übungsblatt zur Analysis I

Aufgabe 25: Zeigen Sie, dass die Folge (s_n) mit

$$s_n = \frac{2n}{n+2} + 2^{-n}$$

gegen s=2 konvergiert. Bestimmen Sie dann zu $\varepsilon=10^{-6}$, eine Zahl N, so dass $|s_n-s|<\varepsilon$ für $n\geq N$.

Aufgabe 26: Zeigen sie: Ist $(s_n)_{n\in\mathbb{N}}$ eine rationale Cauchy-Folge, so ist $(s_n)_{n\in\mathbb{N}}$ beschränkt.

Aufgabe 27: Weisen Sie nach, dass das Produkt reeller Zahlen wohldefiniert ist. Zeigen Sie hierzu zunächst, dass falls (a_n) und (b_n) rationale Cauchy-Folgen sind, auch die Produktfolge (a_nb_n) eine rationale Cauchy-Folge ist. Zeigen Sie dann, dass aus $(a_n) \sim (a'_n)$ und $(b_n) \sim (b'_n)$ die Äquivalenz von (a_nb_n) und $(a'_nb'_n)$ folgt.

Aufgabe 28: Zeigen Sie, dass die reelle <-Relation wohldefiniert ist.

Aufgabe 29: Zeigen Sie, dass die reelle <-Relation vollständig ist.

Aufgabe 30: Zeigen Sie: Ist $s = \overline{(s_n)} \in \mathbb{R}$, so ist $|s| = \overline{(|s_n|)}$.

Abgabe bis spätestens Montag 18.11.2024, 12:15 Uhr im Briefkasten ihres Tutors/ ihrer Tutorin.

Besprechung in den Übungen vom 20.11- 22.11.2024.

Ansprechperson: Maximilian Flamm - maximilian.flamm@uni-tuebingen.de