5. Übungsblatt zur Analysis I

Aufgabe 25: Geben Sie Folgen (s_n) und (v_n) mit $s_n \to \infty$ und $v_n \to 0$ zu jeder der folgenden Situationen $s_n v_n \to \infty$; $s_n v_n \to c \in \mathbb{Q}$; $s_n v_n$ beschränkt, aber nicht konvergent.

Aufgabe 26: Zeigen Sie, daß die Folge (s_n) mit

$$s_n = \frac{2n}{n+2} + 2^{-n}$$

gegen s=2 konvergiert. Bestimmen Sie dann zu $\varepsilon=10^{-6}$, eine Zahl N, so daß $|s_n-s|<\varepsilon$ für $n\geq N$.

Aufgabe 27: Zur Folge (a_n) ist die sogenannte Cesàro-Summierung mittels

$$b_n := \frac{1}{n} \sum_{j=1}^n a_j$$

definiert. Zeigen Sie: Falls (a_n) konvergiert, so konvergiert (b_n) gegen den selben Grenzwert, aber (b_n) kann konvergieren, ohne dass (a_n) es tut.

Aufgabe 28: Zeigen Sie mit Hilfe von Aufgabe 10, daß die Folge

$$a_n = (1 + \frac{1}{n})^n$$

eine Cauchy–Folge ist. Geben Sie dann für $\varepsilon = 10^{-5}$ eine ganze Zahl N an, sodaß $|a_n - a_{n+k}| < \varepsilon$ für $n \ge N$ und $k \ge 1$ ist.

Aufgabe 29: Zeigen Sie, daß die Folge

$$s_n = \sum_{j=1}^n \frac{1}{j(j+1)(j+2)}$$

eine Cauchy–Folge ist, und bestimmen Sie ihren Grenzwert.

Hinweis: Bestimmen Sie A, B und C, so daß $\frac{A}{j(j+1)(j+2)} = \frac{A}{j} + \frac{B}{j+1} + \frac{C}{j+2}$ (Partialbruchzerlegung).

Aufgabe 30: Folgern Sie aus der Dreiecksungleichung, daß für $a, b \in \mathbb{Q}$

$$|a-b| \ge \left| |a| - |b| \right|.$$

Abgabe in der Vorlesungspause am 18.11.2013. Besprechung in den Übungen vom 20.11.-22.11.2013.