6. Übungsblatt zur Analysis I

Aufgabe 29:

Weisen Sie nach, dass das Produkt reeller Zahlen wohldefiniert ist. Zeigen Sie dazu:

- a) Falls (a_n) und (b_n) Cauchy-Folgen sind, so auch die Produktfolge (a_nb_n) .
- b) Ist $(a_n) \sim (a'_n)$ und $(b_n) \sim (b'_n)$, so auch $(a_n b_n) \sim (a'_n b'_n)$.

Aufgabe 30:

Zeigen Sie, dass die reelle <-Relation wohldefiniert ist.

Aufgabe 31:

Zeigen Sie: Ist $s = \overline{(s_n)} \in \mathbb{R}$, so ist $|s| = \overline{(|s_n|)}$.

Aufgabe 32:

Sei $0 < b \le a$. Zeigen Sie, dass die durch $a_0 = a$, $b_0 = b$ und die arithmetischen bzw. geometrischen Mittel

$$a_{n+1} = \frac{a_n + b_n}{2}$$
, $b_{n+1} = \sqrt{a_n b_n}$, $n = 0, 1, 2, ...$

rekursiv definierten Folgen (a_n) und (b_n) gegen denselben Grenzwert konvergieren.

Hinweis: $b \le b_1 \le a_1 \le a$ (warum?)

Aufgabe 33:

Zeigen Sie: Für eine nach oben beschränkte reelle Folge (s_n) ist

$$\lim \sup_{n \to \infty} s_n = \lim_{n \to \infty} \sigma_n \quad \text{wobei } \sigma_n = \sup \{s_n, s_{n+1}, s_{n+2}, \ldots\}.$$

Aufgabe 34:

Zeigen Sie: Ist s der einzige Häufungspunkt einer beschränkten reellen Folge (s_n) , so konvergiert die Folge gegen s.

Zeigen Sie durch ein Gegenbeispiel, dass dies für unbeschränkte Folgen nicht gilt.