Universität Tübingen Mathematisches Institut Prof. Dr. Christian Lubich

5. Übungsblatt zur Analysis I

Aufgabe 23:

a) Untersuchen Sie, welche der Folgen mit n-tem Term

$$\frac{2-\frac{1}{n}}{1+\frac{3}{n}}$$
, $\frac{2n-1}{n+2}$, $\frac{(-1)^n n+1}{n+2}$, $\frac{2n+(-1)^n}{n+2}$, $\frac{n^2-1}{n+2}$

konvergieren, und bestimmen Sie gegebenenfalls den Grenzwert.

b) Geben Sie Folgen (s_n) und (v_n) mit $s_n \to \infty$ und $v_n \to 0$ zu jeder der folgenden Situationen an:

 $s_n v_n \to \infty$; $s_n v_n \to c \in \mathbb{R}$; $s_n v_n$ beschränkt, aber nicht konvergent .

Aufgabe 24:

Zeigen Sie, dass die Folge (s_n) mit

$$s_n = \frac{2n}{n+2} + 2^{-n}$$

gegen s=2 konvergiert. Bestimmen Sie zu einem gegebenen $\varepsilon>0$, etwa $\varepsilon=10^{-6}$, eine Zahl N, sodass $|s_n-s|<\varepsilon$ für $n\geq N$.

Aufgabe 25:

(Cesàro-Summierung) Zur Folge (a_n) betrachte man die Folge

$$b_n = \frac{1}{n} \sum_{j=1}^n a_j .$$

Zeigen Sie: Falls (a_n) konvergiert, so konvergiert (b_n) gegen denselben Grenzwert.

Bemerkung: Das Beispiel $a_n = (-1)^n$ zeigt Ihnen, dass (b_n) konvergieren kann, ohne dass (a_n) konvergiert.

Aufgabe 26:

Zeigen Sie mit Hilfe von Aufgabe 8, dass die Folge

$$a_n = (1 + \frac{1}{n})^n$$

eine Cauchy–Folge ist. Geben Sie für $\varepsilon=10^{-5}$ eine ganze Zahl N an, sodass $|a_n-a_{n+k}|<\varepsilon$ für $n\geq N$ und $k\geq 1$ ist.

Aufgabe 27:

Zeigen Sie, dass die Folge

$$s_n = \sum_{j=1}^n \frac{1}{j(j+1)(j+2)}$$

eine Cauchy-Folge ist, und bestimmen Sie ihren Grenzwert.

Hinweis: Bestimmen Sie A, B und C, sodass $\frac{1}{j(j+1)(j+2)} = \frac{A}{j} + \frac{B}{j+1} + \frac{C}{j+2}$ (Partialbruchzerlegung)

Aufgabe 28:

Folgern Sie aus der Dreiecksungleichung, dass für $a, b \in \mathbb{R}$

$$|a-b| \ge \left| |a| - |b| \right|.$$

Abgabe in der Vorlesungspause am 18.11.2008, Besprechung in den Übungen