
TIME INTEGRATION OF
RANK-CONSTRAINED TUCKER TENSORS∗

CHRISTIAN LUBICH† , BART VANDEREYCKEN‡ , AND HANNA WALACH§

Abstract. Dynamical low-rank approximation in the Tucker tensor format of given large time-
dependent tensors and of tensor differential equations is the subject of this paper. In particular, a
discrete time integration method for rank-constrained Tucker tensors is presented and analyzed. It
extends the known projector-splitting integrator for dynamical low-rank approximation of matrices
to Tucker tensors and is shown to inherit the same favorable properties. The integrator is based on
iteratively applying the matrix projector-splitting integrator to tensor unfoldings but with inexact
solution in a substep. It has the property that it reconstructs time-dependent Tucker tensors of the
given rank exactly. The integrator is also shown to be robust to the presence of small singular values
in the tensor unfoldings. Numerical examples with time-dependent problems from quantum physics
and tensor optimization methods illustrate our theoretical results.

Key words. Tucker tensor format, tensor differential equation, dynamical low-rank approxima-
tion, projector-splitting integrator

AMS subject classifications. 15A03, 15A18, 15A69, 65L05, 65L20, 65L70

1. Introduction. In this paper we propose and study a discrete method for
approximating time-dependent tensors A(t) ∈ Rn1×···×nd with t0 ≤ t ≤ T by tensors
of a prescribed (low) multilinear rank. The tensors A(t) are either given explicitly or
are the unknown solution to a tensor differential equation

.
A(t) = F (t, A(t)), A(t0) = A0,(1.1)

where
.
A(t) = dA/dt. The approximation follows the setting of the dynamical low-

rank approximation of [7], which yields a differential equation for the approximation
Y (t) to A(t) on the manifold M of tensors of multilinear rank r = (r1, . . . , rd). As
is known from [2], such tensors can be represented element-wise in the Tucker format
(see, e.g., [8]) as follows:

yk1,...,kd
(t) =

r1∑
`1=1

· · ·
rd∑

`d=1

c`1,...,`d(t)u
(1)
k1,`1

(t) · · ·u(d)kd,`d
(t),(1.2)

with ki = 1, . . . , ni for all modes i = 1, . . . , d. Using the multilinear product X (see,
e.g., [8]), the relation (1.2) can be written more succinctly as

Y (t) = C(t)
d

X
i=1

Ui(t),

where C(t) ∈ Rr1×···×rd is the time-dependent core tensor of full multilinear rank
with entries c`1,...,`d(t), and Ui(t) is the mode-i time-dependent basis matrix of size

ni × ri with entries u
(i)
ki,`i

(t).

∗JANUARY 17, 2018
†Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen,

Germany (lubich@na.uni-tuebingen.de)
‡Section of Mathematics, University of Geneva, Rue du Lièvre 2-4, 1211 Geneva, Switzerland

(Bart.Vandereycken@unige.ch)
§Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen,

Germany (walach@na.uni-tuebingen.de).

1

2 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

The differential equation for Y (t) ∈ M is obtained by projecting F (t, Y (t)) (or.
A(t) in the case of a given explicit time-dependent tensor A(t)) onto the tangent space
TY (t)M of M at the current approximation Y (t) ∈M:

.
Y (t) = P (Y (t))F (t, Y (t)), Y (t0) = Y 0 ∈M,(1.3)

where P (Y) : Rn1×···×nd → TYM is the orthogonal projection, which can be given
explicitly as an alternating sum of subprojections [7, 9]. The differential equation (1.3)
needs to be solved numerically in virtually all applications. For example, in the context
of molecular quantum dynamics, such an approach is taken in the multiconfiguration
time-dependent Hartree method (MCTDH) [12], where the multivariate wavefunction
is approximated by a linear combination of products of univariate functions.

For the corresponding matrix problem (i.e., the particular case d = 2), a projector-
splitting integrator with remarkable properties has been proposed in [10]. In partic-
ular, contrary to a direct integration of the arising projected differential equations,
that integrator is robust to the presence of small singular values of the current ap-
proximation matrix; see [4, Thm. 2.1] (which is restated as Theorem 2.2 below). Such
a situation commonly arises when the rank is chosen sufficiently large as to obtain an
accurate approximation and the singular values have a decaying behaviour.

We outline the contributions and organization of the paper as follows:
The matrix projector-splitting integrator has been extended to Tucker tensors

in [9] and to tensor trains (or matrix product states in the terminology of physics)
in [11, 3]. In this paper we give a conceptually different derivation of an integrator
for (1.3), based on the idea of an inexact solution of substeps within the matrix
projector-splitting integrator applied to matricizations of (1.3). This derivation allows
us to transfer the known favorable properties of the matrix integrator to the tensor
case. We then show that the newly derived integrator is mathematically equivalent to
the tensor projector-splitting integrator of [9], whose key properties of exactness and
robustness are thus proven in the present paper. We mention that this integrator has
meanwhile proved its robustness and efficiency in a first MCTDH implementation [6].

In Section 2, we briefly restate the matrix projector-splitting integrator and some
of its properties. We then derive in Section 3 the Tucker tensor integrator in a
recursive way from the matrix integrator. In Section 4, we show that the integrator
reproduces the given matrix A(t) if it is explicitly given and it is of rank (r1, . . . , rd).
This extends the exactness property of the integrator in the matrix case [10], which
is fundamental for the error analysis of the matrix projector-splitting integrator in
[4]. In Section 5, we extend the error analysis of [4] to the Tucker tensor case, which
shows the robustness of the integrator in the presence of small singular values of its
matricizations. In Section 6, we show that the integrator derived and studied here is
mathematically equivalent to the projector-splitting integrator for Tucker tensors as
proposed in [9]. Finally, in Section 7, we present numerical experiments that illustrate
the behaviour of the integrator.

2. The matrix projector-splitting integrator. In this section, we briefly
restate the projector-splitting integrator from [10] for the matrix case, i.e., for d = 2.
Recall that our aim is to numerically integrate the initial value problem (1.3) to obtain
a low rank approximation of (1.1). To this end, we will make use of the SVD-like
representation

Y(t) = U(t)S(t)V(t)T

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 3

of the rank-r approximation matrix Y(t) ∈M, where U(t) and V(t) are basis matrices
of size n1 × r and n2 × r for the first and second mode, respectively. The invertible
matrix S(t) ∈ Rr×r has the same nonzero singular values as Y(t), but unlike the SVD,
S(t) is not assumed to be diagonal.

The projector-splitting integrator updates the factors U,S,V, starting from the
initial value Y0 = U0 S0 V0,T . Let F : R × Rn1×n2 → Rn1×n2 . Then one time step
from t0 to t1 = t0 + h proceeds as follows:

1. K-step: Update U0 → U1, S0 → Ŝ1.
Integrate to t = t1 the differential equation

.
K(t) = F (t,K(t)V0,T)V0, K(t0) = U0 S0(2.1)

and perform a QR factorization K(t1) = U1 S1 to orthonormalise the columns
of K(t1). This yields U1 as the final approximation of the basis matrix U(t)

at t = t1, and the temporary update Ŝ1.
2. S-step: Update Ŝ1 → S̃0.

Integrate to t = t1 the differential equation

.
S(t) = −U1,T F (t,U1 S(t)V0,T)V0, S(t0) = Ŝ1(2.2)

This yields the temporary update S̃0 = S(t1).

3. L-step: Update V0 → V1, S̃0 → S1.
Integrate to t = t1 the differential equation

.
LT (t) = U1,T F (t,U1 L(t)T), LT (t0) = S̃0 V0,T(2.3)

and perform a QR factorization L(t1) = V1 S1,T . This yields the final ap-
proximations V1 and S1.

Merging the computed factors results in the rank-r approximation matrix

Y1 = U1 S1 V1,T(2.4)

after one time step. To continue in time, we take the factorized matrix Y1 as initial
value for the next time step and apply this scheme again. This way we obtain a
first-order splitting method for (1.3).

The matrix projector-splitting integrator has a remarkable exactness property.

Theorem 2.1. [10, Thm. 4.1] Let A(t) ∈ Rn1×n2 with rankA(t) ≤ r for all t and
A(t0) = Y0. Further, let V(t1)T V(t0) be invertible. Then, the splitting integrator

described above (with F (t,Y) =
.
A(t)) reproduces the exact solution: Y1 = A(t1).

Moreover, the integrator is robust to the presence of small singular values in the
solution or its approximation.

Theorem 2.2. [4, Thm. 2.1] Let A(t) denote the solution of (1.1) on [t0, T] in
case of d = 2 and let M be the manifold of rank r matrices in Rn1×n2 . Suppose the
following assumptions are satisfied with ‖ · ‖ the Euclidean norm.

(a) F (t,Y) is Lipschitz continuous and bounded for all Y, Ỹ ∈ Rn1×n2 :

‖F (t,Y)− F (t, Ỹ)‖ ≤ L‖Y−Ỹ‖, ‖F (t,Y)‖ ≤ B.

(b) F (t,Y) can be decomposed into a tangential part and a small perturbation:

F (t,Y) = M(t,Y) +R(t,Y),

4 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

M(t,Y) ∈ TYM, ‖R(t,Y)‖ ≤ ε,

for all Y ∈M in a neighborhood of A(t) and for all t ∈ [t0, T].
(c) The initial value A(t0) for (1.1) has rank r.
Then, the error of the splitting integrator described above after n steps with step size
h > 0 satisfies for all tn = t0 + nh ≤ T

‖Yn−A(tn)‖ ≤ c1h+ c2ε,

where the constants c1, c2 only depend on L,B, T − t0. In particular, the constants
are independent of singular values of the exact or approximate solution matrix.

In general, the differential equations in the substeps (2.1)–(2.3) have to be solved

numerically, e.g., by a Runge–Kutta method. In the case when F (t,Y) =
.
A(t)

for explicitly given matrices A(t), the integrator works with the increment A(t1) −
A(t0) and so the substeps can be solved directly. If, however, we apply a numerical

integrator, then instead of Yn, we compute a perturbed matrix Ỹn. Assuming that
the arising local errors in the substeps are bounded by hη, the error bound of (2.2)
after n time steps is given by

(2.5) ‖Ỹn −A(tn)‖ ≤ c1h+ c2ε+ c3η,

where c3 also only depends on L,B, T − t0; see Section 2.6.3 in [4].
These exactness and robustness properties will be extended to the Tucker inte-

grator in Sections 4 and 5, respectively. But first, we present the integration scheme
for tensors in the Tucker format.

3. The nested Tucker integrator.

3.1. Derivation of the integrator. To find a low-rank approximation for (1.1)
in the case of Tucker tensors of general dimension d, we will now extend the matrix
projector-splitting integrator to tensors. To this end, we will need to transfer tensors
into a matrix setting by considering their matricizations. In particular, we denote by

Mati(X) = X ∈ Rni×n1···ni−1ni+1···nd

the i-mode matricization of a tensor X ∈ Rn1×···×nd . It arranges the mode-i fibres of
X to be the rows of the resulting matrix X. The reversal of the i-mode matricization
is called tensorization, which we denote as

Teni(X) = X ∈ Rn1×···×nd .

We begin by matricizing the tensor ODE (1.1) in mode 1:

Mat1
(.
A(t)

)
= Mat1

(
F (t, A(t))

)
, Mat1

(
A(t0)

)
= Mat1

(
A0
)
.(3.1)

This will allow us to formally apply the matrix projector-splitting integrator to this
matrix ODE where the initial value Mat1

(
A0
)

is approximated by Mat1
(
Y 0
)

with
Y 0 ∈M. Since Y 0 has multilinear rank (r1, . . . , rd), it satisfies the decomposition

Y 0 = C0
d

X
i=1

U0
i

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 5

with C0 ∈ Rr1×···×rd and U0
i ∈ Rni×ri . Since we are dealing with the first step of the

algorithm, let us denote the initial value as Y 0
1 := Y 0 with core tensor as C0

1 := C0.
By performing the QR decomposition

Mat1(C0
1)T = Q0

1 S
0,T
1 ∈ Rr2···rd×r1

and denoting

(3.2) V0,T
1 = Q0,T

1

d⊗
i=2

U0,T
i ∈ Rr1×n2···nd ,

we obtain the necessary SVD-like representation of the initial value of (3.1) as

Mat1(Y 0
1) = U0

1 Mat1(C0
1)

d⊗
i=2

U0,T
i = U0

1 S
0
1 V

0,T
1 .

Now, we are in the situation to apply the matrix projector-splitting integrator
to (3.1):

1. K-step: Update U0
1 → U1

1, S0
1 → Ŝ1

1.

2. S-step: Update Ŝ1
1 → S̃0

1.

3. L-step: Update V0
1 → V1

1, S̃0
1 → S1

1 by solving approximately

(3.3)

.
LT
1 (t) = U1,T

1 Mat1
(
F (t,Ten1(U1

1 L
T
1 (t)))

)
,

LT
1 (t0) = L0,T

1 = S̃0
1 V

0,T
1 ,

with L1 ∈ Rr1×n2···nd and the QR factorization L1(t1) = V1
1 S

1,T
1 .

The K- and S-steps can be calculated as in the matrix case, i.e., solving (2.1) and (2.2)
but applied to (3.1). However, we do not solve the matrix differential equation in the
L-step directly since it is defined for a prohibitively large L1. More importantly, it
would also not lead to an approximation for Y (t1) of multilinear rank (r1, . . . , rd) since
the exact L-step above only reduces the rank of the first mode. Instead, we perform a
low-rank approximation for (3.3) by applying the matrix projector-splitting integrator
again to a reshaped version of it.

Defining Y2(t) = Ten1(LT
1 (t)) ∈ Rr1×n2×···×nd , we first retensorize (3.3) as

.
Y2(t) = F (t, Y2(t)×1 U

1
1)×1 U

1,T
1 , Y2(t0) = Ten1(L0,T

1).(3.4)

Observe that Y2(t) is usually of significantly smaller size than Y (t) since typically
r1 � n1. Next, we unfold (3.4) in the second mode. For simplicity of notation, we
denote this 2-mode unfolding of Y2 by Y[2] := Mat2(Y2) ∈ Rn2×r1n3···nd . This gives
the matrix differential equation

.
Y[2](t) = Mat2

(
F (t,Ten2(Y[2](t))×1 U

1
1)×1 U

1,T
1

)
and, using (3.3) and (3.2), the initial value

Y[2](t0) = Mat2

(
Ten1(L0,T

1)
)

= Mat2

(
Ten1(S̃0

1 Q
0,T
1

d⊗
i=2

U0,T
i)

)
.

Defining C0
2 = Ten1

(
S̃0
1 Q

0,T
1

)
∈ Rr1×···×rd and C0

[2] = Mat2(C0
2), we also have

Y[2](t0) = Mat2
(
C0

2

d

X
i=2

U0
i

)
= U0

2 C
0
[2]

(
Ir1 ⊗

d⊗
i=3

U0,T
i

)
.

6 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

As before we have to determine the SVD-like representation of Y[2](t0). To this end,

compute the QR factorization C0,T
[2] = Q0

2 S
0,T
2 . We then obtain the desired result as

Y[2](t0) = U0
2 S

0
2 V

0,T
2 with V0,T

2 = Q0,T
2

(
Ir1 ⊗

⊗d
i=3 U

0,T
i

)
∈ Rr2×r1n3···nd .

Now that we have set up the matrix problem again, we can apply the matrix
projector-splitting integrator to

.
Y[2](t).

1. K-step: Update U0
2 → U1

2, S0
2 → Ŝ1

2

2. S-step: Update Ŝ1
2 → S̃0

2

3. L-step: Update V0
2 → V1

2, S̃0
2 → S1

2 by solving approximately

.
LT
2 (t) = U1,T

2 Mat2

(
F (t,Ten2(U1

2 L
T
2 (t))×1 U

1
1)×1 U

1,T
1

)
,

LT
2 (t0) = L0,T

2 = S̃0
2 V

0,T
2 ,

with L2 ∈ Rr2×r1n3···nd and the QR factorization L2(t1) = V1
2 S

1,T
2 .

We continue recursively with solving the L-step approximately in each iteration
step of the integrator. Generalising the pattern for modes 1 and 2 from above to
general i, this requires us to find Yi(t) ∈ Rr1×···×ri−1×ni×···×nd that satisfies the ODE

.
Yi(t) = F

(
t, Yi(t)

i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k , Yi(t0) = Teni−1

(
L0,T
i−1

)
.(3.5)

The K- and S-steps for mode i − 1 calculate, in particular, the matrices S̃0
i−1 and

Q0
i−1. This implies that the initial value in the above ODE is available as

L0,T
i−1 = S̃0

i−1 Q
0,T
i−1

(i−2⊗
k=1

Irk ⊗
d⊗

k=i

U0,T
k

)
∈ Rri−1×r1···ri−2ni···nd .

To obtain a suitable matrix version of (3.5), we unfold it in mode i and define Y[i] =
Mati(Yi) ∈ Rni×r1···ri−1ni+1···nd . This gives

(3.6)

.
Y[i](t) = Mati

(
F
(
t,Teni

(
Y[i](t)

)i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k

)
,

Y0
[i] = Mati

(
C0

i

i−1

X
k=1

Irk

d

X
k=i

U0
k

)
= U0

i S
0
i V

0,T
i

with C0
i = Teni−1

(
S̃0
i−1 Q

0,T
i−1

)
∈ Rr1×···×rd and the QR decomposition

Mati(C
0
i)T = Q0

i S
0,T
i ∈ Rr1···ri−1ri+1···rd×ri .

In addition, we have also used

(3.7) V0,T
i = Q0,T

i

(i−1⊗
k=1

Irk ⊗
d⊗

k=i+1

U0,T
k

)
∈ Rri×r1···ri−1ni+1···nd .

In this way, we can indeed apply the K- and S-steps of the matrix projector-
splitting to (3.6). The L-step is recursively solving

(3.8)
L̇T
i (t) = U1,T

i Mati

(
F
(
t,Teni

(
U1

i L
T
i (t)

)i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k

)
,

LT
i (t0) = L0,T

i = S̃0
i V

0,T
i .

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 7

with the scheme we just explained. The recursion ends at i = d since then the L-step,

(3.9)

.
LT
d = U1,T

d Matd

(
F
(
t,Tend

(
U1

d L
T
d

)d−1

X
i=1

U1
i

)d−1

X
i=1

U1,T
i

)
,

LT
d (t0) = L0,T

d = S̃0
d V

0,T
d ,

can then be solved explicitly for LT
d (t1) ∈ Rrd×r1···rd−1 . Observe that this means that

Ld(t) actually corresponds to the update of the core tensor C(t) itself. Hence, with
such an explicit L- step we have calculated the final update Tend(Ld(t1)) = C1.

The scheme from above operates on tensors Yi(t) that consecutively get smaller
for i = 1, 2, . . . , d. However, we can also interpret it as computing an approximation
Y 1 for the Tucker tensor Y (t1) ∈ Rn1×···×nd in (1.3). In particular, we have

Y 1 = Ten1(U1
1 L

T
1 (t1)) = Ten1

(
U1

1 Mat1(Y2(t1))
)

= Y2(t1)×1 U
1
1

with L1(t1) the approximate solution of (3.3) obtained using Y2(t1) in (3.4). In turn,
Y2(t1) is solved similarly using Y3(t):

Y2(t1) = Ten2(U1
2 L

T
2 (t1)) = Y3(t1)×2 U

1
2 .

Hence, continuing recursively for all modes, we obtain

Y 1 = Y2(t1)×1 U
1
1 = Y3(t1)×2 U

1
2×1 U

1
1

= · · · = Y 1
i+1

i

X
k=1

U1
k = C1

d

X
k=1

U1
k .

3.2. Practical algorithm. As explained above, the nested Tucker integrator
follows the scheme of recursively applying the matrix projector-splitting integrator
with solving the first two steps, but performing a low-rank approximation for the third
substep in each mode. The implementation of this integration scheme is straightfor-
ward and results in Alg. 3.1. It simply updates the basis matrices Ui in the K-step
and the auxiliary matrix Si in the S-step for each mode. Quite remarkably, in the
approximate L-step it suffices to only update the core tensor C0. This also reduces the
size of the matrix differential equation that has to be solved for the next mode. For
computational efficiency, we have written the operations using multilinear products.
For example, line 4 is equivalent to (3.7).

The differential equations for K,S,L that need to be solved during the integration
scheme, can be solved approximately, e.g., by a Runge–Kutta method. In the case,
where F (t, Y) is solution-independent and solely given by a tensor A(t) ∈ Rn1×···×nd ,
those differential equations can be solved directly.

The integration scheme in Alg. 3.1 consists of recursively applying the matrix
projector-splitting integrator. Since we do not solve the full matrix scheme, but
rather the first two steps in order to update Ui and Si for all modes i = 1, . . . , d, it
is a nested matrix projector-splitting integrator for Tucker tensors, or in short, the
nested Tucker integrator.

8 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

Algorithm 3.1 One time step of the nested Tucker integrator

Data: Tucker tensor Y 0 = C0Xd
i=1 U

0
i , F (t, Y), t0, t1

Result: Tucker tensor Y 1 = C1Xd
i=1 U

1
i

1 begin
2 for i = 1 to d do

3 compute QR factorization Mati(C
0)T = Q0

i S
0,T
i

4 set V0,T
i = Mati

(
Teni(Q

0,T
i)

d

X
l=i+1

U0,T
l

)
5 set K0

i = U0
i S

0
i

6 set Y+
[i](t) = Ki(t)V

0,T
i

7 solve
.
Ki(t) = Mati

(
F
(
t,Teni(Y

+
[i])

i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k

)
V0

i ,

with initial value Ki(t0) = K0
i and return K1

i = Ki(t1)

8 compute QR factorization K1
i = U1

i Ŝ
1
i

9 set Y−
[i](t) = U1

i Si(t)V
0,T
i

10 solve
.
Si(t) = −U1,T

i Mati

(
F
(
t,Teni(Y

−
[i])

i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k

)
V0

i ,

with initial value Si(t0) = Ŝ1
i and return S̃0

i = Si(t1)

11 set C0 = Teni(S̃
0
i Q

0,T
i)

12 set L0,T = Matd(C0)

13 solve
.
LT (t) = U1,T

d Matd

(
F
(
t,Tend(U1

d L(t)T)
d−1

X
k=1

U1
k

)d−1

X
k=1

U1,T
k

)
,

with initial value LT (t0) = L0,T and return L1,T = LT (t1)
14 set C1 = Tend(L1,T)

15 set Y 1 = C1
d

X
i=1

U1
i

4. An exactness property of the integrator. Let M ⊂ Rn1×···×nd be the
manifold of tensors with multilinear rank (r1, . . . , rd). Suppose that A(t) ∈ Rn1×···×nd

is given explicitly, hence, we formally have F (t, Y) =
.
A(t) in (1.1) and (1.3). In

addition, we assume that A(t) ∈ M for t0 ≤ t ≤ T . Our aim in this section is to
prove that Alg. 3.1, the nested Tucker integrator, is in that case exact. In other words,
Alg. 3.1 solves the initial value problem (1.3) exactly even though it is a discrete time
stepping method. As mentioned in Theorem 2.1, the projector-splitting integrator for
matrices already has this property but it does not hold for more standard integrators
on M, like the projected Runge–Kutta methods in [5].

Since A(t) ∈M for all t, we can write its i-mode matricization as

Mati(A(t)) = Ui(t)Si(t)Wi(t)
T ,(4.1)

where Ui(t) ∈ Rni×ri and Wi(t) ∈ Rn1···ni−1·ni+1···nd×ri have orthonormal columns
and Si(t) ∈ Rri×ri for all i = 1, . . . , d. With this SVD-like representation we can state
and prove the following exactness result.

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 9

Theorem 4.1. Let A(t) be of multilinear rank (r1, . . . , rd) for all t ∈ (t0, t1) and
let Y (t0) = A(t0). Further, let Wi(t1)T Wi(t0) be invertible for all i = 2, . . . , d.

Then, Algorithm 3.1 for F (t, Y) =
.
A(t) reproduces the exact solution: Y 1 = A(t1).

Proof. Recall that the nested Tucker integrator in Alg. 3.1 is designed to approx-
imately solve the initial value subproblems (see (3.6))

.
Y[i](t) = Mati

(.
A(t)

i−1

X
k=1

U1,T
k

)
, Y[i](t0) = Y0

[i] = U0
i S

0
i V

0,T
i ,(4.2)

where Teni(V
0,T
i) = Teni(Q

0,T
i)Xd

l=i+1 U
0
l ∈ Rr1×···×ri×ni+1×···×nd for each mode

i = 1, . . . , d. In addition, the tensorized result Y 1
i = Teni(Y[i](t1)) after one time step

is in the low-rank manifoldMi := {Yi ∈ Rr1×···×ri−1×ni×···×nd : rankMati(Yi) = ri}.
In the first part of the proof, we show that the initial value for (4.2) can be written

in terms of A(t0):

Y[i](t0) = Mati

(
A(t0)

i−1

X
k=1

U1,T
k

)
.(4.3)

This ensures that Y0
[i] has rank ri. With this initial value, the exact solution of (4.2)

has rank ri as well, since A(t) is assumed to have multilinear rank (r1, . . . , rd):

Y[i](t) = Y[i](t0) +

t∫
t0

.
Y[i](s)ds

= Mati

(
A(t0)

i−1

X
k=1

U1,T
k

)
+ Mati

((
A(t)−A(t0)

)i−1

X
k=1

U1,T
k

)
= Mati

(
A(t)

i−1

X
k=1

U1,T
k

)
= Ui(t)Si(t)Vi(t)

T ,

where we use the decomposition (4.1) and set

Vi(t) = (U1
1⊗ · · · ⊗U1

i−1⊗ Ii⊗ · · · ⊗ Id) Wi(t)(4.4)

To show (4.3), we use an induction argument. With the abbreviation ∆A =
A(t1)−A(t0) we have

U1
i−1 L

0,T
i−1 = U1

i−1 Ŝ
1
i−1 V

0,T
i−1−U1

i−1 U
1,T
i−1 Mati−1

(
∆A

i−2

X
k=1

U1,T
k

)
V0

i−1 V
0,T
i−1

= U0
i−1 S

0
i−1 V

0,T
i−1 +Mati−1

(
∆A

i−2

X
k=1

U1,T
k

)
V0

i−1 V
0,T
i−1

−U1
i−1 U

1,T
i−1 Mati−1

(
∆A

i−2

X
k=1

U1,T
k

)
V0

i−1 V
0,T
i−1

= Mati−1

(
A(t0)

i−2

X
k=1

U1,T
k

)
+
(
I−U1

i−1 U
1,T
i−1

)(
Mati−1

(
∆A

i−2

X
k=1

U1,T
k

)
V0

i−1 V
0,T
i−1

)
,

where the last equality holds by the induction hypothesis. It follows that

L0,T
i−1 = U1,T

i−1 Mati−1

(
A(t0)

i−2

X
k=1

U1,T
k

)
= Mati−1

(
A(t0)

i−1

X
k=1

U1,T
k

)
.

10 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

Retensorizing and taking the i-mode unfolding yields

Y[i](t0) = Mati(Teni−1(L0,T
i−1)),

which becomes (4.3) with the above formula for L0,T
i−1.

To show the exactness of Alg. 3.1, we first consider the d-mode unfolded subprob-
lem. Here, the last substep of the nested Tucker integrator is the same as applying
the matrix projector-splitting integrator to (4.2) with initial value (4.3) for i = d.
Since the updated basis matrices U1

k for k = 1, . . . i− 1 are not time-dependent from
the i-th integration step onward, we observe by means of (4.4), that

Vi(t1)T Vi(t0) = WT
i (t0) (U1,T

1 U1
1⊗ · · · ⊗U1,T

i−1 U
1
i−1⊗ Ii⊗ · · · ⊗ Id) Wi(t0)

= Wi(t1)T Wi(t0),

for all i = 1, . . . , d. Additionally, by assumption Wi(t1)T Wi(t0) is non-singular and
so we conclude by Theorem 2.1 that the integrator is exact for the d-mode setting
after one time step from t0 to t1:

Y1
[d] = Matd

(
A(t1)

d−1

X
k=1

U1,T
k

)
.

We now show by induction for i = d, . . . , 1, that

Y1
[i] = Mati

(
A(t1)

i−1

X
k=1

U1,T
k

)
.(4.5)

Suppose this has been shown for Y1
[d], . . . ,Y

1
[i+1]. The substep of Alg. 3.1 in the

i-mode unfolding solves exactly the differential equations

.
Ki(t) = Mati

(.
A(t)

i−1

X
k=1

U1,T
k

)
V0

i , Ki(t0) = Y0
[i] V

0
i

.
Si(t) = U1,T

i Mati

(.
A(t)

i−1

X
k=1

U1,T
k

)
V0

i , Si(t0) = U1,T
i Y0

[i] V
0
i ,

and approximately the differential equation

.
LT
i (t) = U1,T

i Mati

(.
A(t)

i−1

X
k=1

U1,T
k

)
, LT

i (t0) = U1,T
i Y0

[i] .

Since Y1
[i+1] is the exact solution for the (i+1)-mode setting, we conclude by induction

hypothesis

L1,T
i = Mati

(
Teni+1(Y1

[i+1])
)

= Mati

(
A(t1)

i

X
k=1

U1,T
k

)
= U1,T

i Mati

(
A(t1)

i−1

X
k=1

U1,T
k

)
= LT

i (t1).

Hence also the differential equation in the third substep of the i-mode unfolded sub-
problem is solved exactly. By the exactness result for the matrix projector-splitting
integrator, Alg. 3.1 solves (4.2) with initial value (4.3) exactly, so that (4.5) is satisfied.
Hence, (4.5) holds also for i = 1, which yields Y 1 = A(t1).

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 11

5. Error bounds for the nested Tucker integrator. We now show that, just
like in Thm. 2.2 for the matrix case, the nested Tucker integrator is robust to small
singular values. Since this integrator is based on recursively applying the matrix
projector-splitting integrator, the plan is to analyse these recursive steps from the
matrix perspective so that we can apply Thm. 2.2. To this end, we first need to
generalise the assumptions of Thm. 2.2.

Let A(t) be the solution of (1.1) on [t0, T]. We denote again by M the manifold
of tensors of multilinear rank (r1, . . . , rd). Let

Mi = {Y ∈ Rn1×···×nd : rank(Mati(Y)) = ri},

so that M = M1 ∩ · · · ∩ Md. We assume that for each i = 1, . . . , d, the i-mode
unfolding of (1.1) satisfies the following conditions.

• F (t, Y) is Lipschitz continuous and bounded for all Y, Ỹ ∈ Rn1×···×nd :

‖F (t, Y)− F (t, Ỹ)‖ ≤ L‖Y − Ỹ ‖, ‖F (t, Y)‖ ≤ B.(5.1)

• F (t, Y) can be decomposed into a tangential part and a small perturbation:

F (t, Y) = Mi(t, Y) +Ri(t, Y),

Mi(t, Y) ∈ TYMi, ‖Ri(t, Y)‖ ≤ ε,
(5.2)

for all Y ∈Mi in a neighborhood of A(t) and for all t ∈ [t0, T].
• The initial value A(t0) for (1.1) has multilinear rank (r1, . . . , rd).

The second condition (5.2) is formulated in terms ofMi that are essentially fixed
matrix manifolds. Since we are solving (1.3) on a fixed rank Tucker manifold M, it
seems more natural to impose that F (t, Y) is close to the tangent space of M, that
is,

(5.3) ‖F (t, Y)− P (Y)F (t, Y)‖ ≤ ε.

However, sinceM =M1 ∩ · · · ∩Md, by definition of a tangent space we get TYM⊆
TYM1 ∩ · · · ∩ TYMd for Y ∈ M. Hence, P (Y)F (t, Y) ∈ TYMi for all i = 1, . . . , d
and so (5.3) actually implies (5.2) for all Y ∈M.

Theorem 5.1. Under the above assumptions, the error of the nested Tucker in-
tegrator after n steps with step size h > 0 satisfies for all tn = t0 + nh ≤ T :

‖Yn −A(tn)‖ ≤ c1h+ c2ε,

where the constants c1, c2 only depend on L,B, T − t0 and the dimension d. In par-
ticular, the constants are independent of singular values of matricizations of the exact
or approximate solution tensor.

Proof. Recall from (3.5) and (3.8) for the derivation of the nested Tucker inte-
grator, that Alg. 3.1 solves approximately the following subproblem for each mode i
on Rr1×···×ri−1×ni×···×nd :

.
Yi(t) = F

(
t, Yi(t)

i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k , Yi(t0) = Teni−1(L0,T

i−1)

with L0,T
i−1 = S̃0

i−1 V
0,T
i−1. Introducing

Zi(t) = Yi(t)
i−1

X
k=1

U1
k ∈M1 ∩ · · · ∩Mi−1 ⊂ Rn1×···×nd ,

12 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

we obtain the equivalent initial value problem on Rn1×···×nd

.
Zi(t) = F

(
t, Zi(t)

)i−1

X
k=1

(U1
k U

1,T
k), Zi(t0) = Teni−1(L0,T

i−1)
i−1

X
k=1

U1
k .(5.4)

We note that since L0,T
i−1 has full rank, we have Zi(t0) ∈ Mi. Alg. 3.1 now applies

the matrix projector-splitting integrator with inexact integration in the third substep
to the i-mode unfolded differential equation (5.4). This results in the approximation
Z1
i ∈Mi to Zi(t1).

We show by induction for i = d, . . . , 1 the local error bound

‖Z1
i − Zi(t1)‖ = O(h(ε+ h)),(5.5)

where the constants symbolized by the O notation depend only on L,B and d. For
i = d, the approximation is obtained by the matrix projector-splitting algorithm
with exact solution of all three substeps. We verify that the conditions (a–c) of
Thm. 2.2 applied to (5.4) are satisfied: Assumption (a) is trivially satisfied by (5.1)

since U1
k U

1,T
k is an orthogonal projector. Using (5.2), the d-mode unfolding of the

right hand side of (5.4) can be decomposed, for Y ∈Md, as

Matd

(
F (t, Y)

d−1

X
k=1

(U1
k U

1,T
k)

)
=Matd

(
Md(t, Y)

d−1

X
k=1

(U1
k U

1,T
k)

)
+ Matd

(
Rd(t, Y)

d−1

X
k=1

(U1
k U

1,T
k)

)
,

where Md(t, Y) ∈ TYMd and ‖Rd(t, Y)‖ ≤ ε.
We note that if Md(t, Y) ∈ TYMd and Y = Y Xd−1

k=1(U1
k U

1,T
k) (as is the case

for Y = Zi(t) in (5.4)), then we also have Md(t, Y)Xd−1
k=1(U1

k U
1,T
k) ∈ TYMd. This

holds true because if we consider the singular value decomposition of Matd(Y) =

USVT , then VT = VT ⊗d−1
k=1 U

1
k U

1,T
k . Now, M ∈ TYMd means that Matd(M) =

δUSVT +U δSVT +US δVT for some suitable δU, δS, δV. But then, since VT =

VT ⊗d−1
k=1 U

1
k U

1,T
k , this implies that Matd

(
M Xd−1

k=1(U1
k U

1,T
k)

)
is of the same form

with a modifed δV, and hence M Xd−1
k=1(U1

k U
1,T
k) ∈ TYMd.

By definition, Matd(Md) = {Matd(Y) : Y ∈Md} is the manifold of matrices of
rank rd of dimension (nd × n1 · · ·nd−1). Moreover, for Y ∈ Md and Y = Matd(Y),
we have TY Matd(Md) = Matd(TYMd). We conclude that

Matd

(
Md(t, Y)

d−1

X
k=1

(U1
k U

1,T
k)

)
∈ TY Matd(Md)

and the corresponding term with Rd is still bounded by ε thanks to (5.2). Hence,
assumption (b) is verified. Since assumption (c) was shown above, we are now in the
situation to apply Thm. 2.2, which yields (5.5) for i = d.

We proceed similarly for i = d − 1 down to 1. In these cases, we apply the
matrix projector-splitting algorithm to the ith unfolding with an inexact solution of
the third substep. The error of this inexact solution is given by (5.5) for i + 1. In
the same way as before, the conditions of Thm. 2.2 are verified for the rank ri matrix
manifold Mati(Mi). With the induction hypothesis that (5.5) holds for i+ 1, . . . , d,
we conclude from the error bound (2.5) (for the situation of inexact solutions in the
substeps) that (5.5) also holds for i.

For i = 1, this gives the stated error bound.

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 13

6. Equivalence with the tensor projector-splitting integrator of [9]. The
derivation of the nested Tucker integrator presented in Section 3 is based on the idea
of solving the differential equations for Ki and Si directly, but computing a low-rank
approximation of the evolution equation for Li, where i = 1, . . . , d− 1.

This is a conceptually different derivation from the time integrator described
in [9]. Its full algorithm is restated in Alg. 6.1.

Algorithm 6.1 One time step of the Tucker integrator of [9]

Data: Tucker tensor Y 0 = C0Xd
i=1 U

0
i , F (t, Y), t0, t1

Result: Tucker tensor Y 1 = C1Xd
i=1 U

1
i

1 begin
2 for i = 1 to d do

3 compute QR factorization Mati(C
0)T = Q0

i S
0,T
i

4 set V0,T
i = Mati

(
Teni(Q

0,T
i)

i−1

X
k=1

U1,T
k

d

X
l=i+1

U0,T
l

)
5 set K0

i = U0
i S

0
i

6 set Y+
[i](t) = Ki(t)V

0,T
i

7 solve
.
Ki(t) = Mati

(
F (t,Teni(Y

+
[i]))
)
V0

i ,

with initial value Ki(t0) = K0
i and return K1

i = Ki(t1)

8 compute QR factorization K1
i = U1

i Ŝ
1
i

9 set S0
i = Ŝ1

i

10 set Y−
[i](t) = U1

i Si(t)V
0,T
i

11 solve
.
Si(t) = −U1,T

i Mati
(
F (t,Teni(Y

−
[i]))
)
V0

i ,

with initial value Si(t0) = S0
i and return S1

i = Si(t1)

12 set C0 = Teni(S
1
i Q

0,T
i)

13 solve
.
C(t) = F

(
t, C(t)

d

X
i=1

U1
i

) d

X
i=1

U1,T
i ,

with initial value C(t0) = C0 and return C1 = C(t1)

14 set Y 1 = C1
d

X
i=1

U1
i

Comparing Alg. 6.1 with Alg. 3.1 for the nested Tucker integrator, we see that the
two algorithms solve different matrix differential equations for Ki(t) and Si(t). The
reason is the positioning of the updated basis matrices U1

i : in Alg. 6.1, the corange

V0,T
i of the current unfolded approximation tensor takes those basis matrices after

performing one time step, whereas in Alg. 3.1, they are provided on the right hand side
of the differential equation for Yi(t). Therefore, we observe that the time integrator
described in [9] does not reduce the dimension in each mode, contrary to the nested
Tucker integrator, which diminishes the dimension of the current mode due to the
inexact solution in the third substep.

The derivation of the two integrators also draws a distinction regarding the known
favorable properties of the matrix integrator to the Tucker tensor case. As we have
seen in Sections 4 and 5, the exactness result and the robustness with respect to

14 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

singular values can be transfered to the nested Tucker integrator, whereas it is unclear
how to show those results directly for the integrator proposed in [9].

Nevertheless, those two properties also hold for the Tucker integrator of Alg. 6.1,
since we will see in the following that both integration methods are equivalent.

Theorem 6.1. The nested Tucker integrator presented in Section 3 (Alg. 3.1) and
the Tucker integrator described in [9] (Alg. 6.1) applied on the tensor differential equa-
tion (1.1) are equivalent in the sense that they yield the same low-rank approximation
Y 1 after one time step.

Proof. It is sufficient to show equivalence of the matrix differential equations that
appear in Alg. 3.1 and 6.1. In order to distinguish between the factors computed by
those two methods, we will denote those for Alg. 6.1 using · , e.g., Vi, Ki(t), and
Si(t). The notation for Alg. 3.1 is left unchanged.

We start with Alg. 6.1. Writing line 4 as

V
0,T

i = Q0,T
i

(i−1⊗
k=1

U1,T
k ⊗

d⊗
k=i+1

U0,T
k

)
,

the equation of motion of Ki becomes

.
Ki(t) = Mati

(
F
(
t,Teni(Ki(t)V

0,T

i)
))

V
0

i

= Mati

(
F
(
t,Teni

(
Ki(t)Q

0,T
i

(i−1⊗
k=1

U1,T
k ⊗

d⊗
k=i+1

U0,T
k

)))
V

0

i .

For Alg. 3.1, on the other hand, that equation reads

.
Ki(t) = Mati

(
F
(
t,Teni(Ki(t)V

0,T
i)

i−1

X
k=1

U1
k

)i−1

X
k=1

U1,T
k

)
V0

i .

We first expand the argument of F in this ODE. Writing line 4 in Alg. 3.1 as

V0,T
i = Q0,T

i

(i−1⊗
k=1

Irk ⊗
d⊗

k=i+1

U0,T
k

)
and substituting, we obtain

Teni(Ki(t)V
0,T
i)

i−1

X
k=1

U1
k = Teni(Ki(t)Q

0,T
i)

d

X
k=i+1

U0
k

i−1

X
k=1

U1
k

= Teni

(
Ki(t)Q

0,T
i

(d⊗
k=i+1

U0,T
k ⊗

i−1⊗
k=1

U1,T
k

))
.

Hence, we see that F has the same arguments in both algorithms for the K-step.
Omitting it, we continue with

.
Ki(t) = Mati

(
F (t, ·)

i−1

X
k=1

U1,T
k

)
V0

i

= Mati

(
F (t, ·)

)(i−1⊗
k=1

U1,T
k ⊗

d⊗
k=i+1

Irk

)(i−1⊗
k=1

Irk ⊗
d⊗

k=i+1

U0
k

)
Q0

i

= Mati

(
F (t, ·)

)(i−1⊗
k=1

U1,T
k ⊗

d⊗
k=i+1

U0
k

)
Q0

i .

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 15

Comparing with V
0

i above, we see that the differential equations for Ki(t) and Ki(t)
are indeed equivalent.

Hence, applying the same numerical method to both of them would give the same

result K1
i = K

1

i .

The equivalence of the evolution equations for
.
Si(t) and

.
Si(t) can be shown in

the same way as above. This again gives the same numerical solutions after one time

step, i.e., S1
i = S

1

i .
Finally, for the core tensor, we compare the evolution equation for C(t) in Alg. 6.1,

.
C(t) = F

(
t, C(t)

d

X
i=1

U1
i

) d

X
i=1

U1,T
i , C(t0) = C0,

with that of L(t) from Alg. 3.1. Retensorizing the latter in the dth mode yields

Tend(
.
LT (t)) = Tend

(
U1,T

d Matd

(
F
(
t,Tend(U1

d L
T (t))

d−1

X
i=1

U1
i

)d−1

X
i=1

U1,T
i

))
= Tend

(
U1,T

d Matd

(
F
(
t,Tend(LT (t))

d

X
i=1

U1
i

)d−1

X
i=1

U1,T
i

))
= F

(
t,Tend(LT (t))

d

X
i=1

U1
i

) d

X
i=1

U1,T
i .

Identifying now C(t) as Tend(LT (t)), we see that differential equations are the same.
Since the same holds true for the initial values,

Tend(L0,T
d) = Tend(Matd(C0)) = C0,

both algorithms deliver the same same low-rank approximation Y 1.

7. Numerical experiments. We present two numerical examples to illustrate
our theoretical results of the proposed Tucker integrator. We consider examples that
are tensor variants of the examples in [4, Section 4] for the matrix case, in particular,
a discrete nonlinear Schrödinger equation and an example of approximately adding
tensors in the Tucker format.

7.1. A discrete nonlinear Schrödinger equation. We model a dilute Bose–
Einstein condensate, trapped in a periodic potential [13], on a regular lattice of
width γ. The dynamics of its phase diagram is governed by the discrete nonlinear
Schrödinger equation

i
.
A(t) = −1

2
L[A(t)] + ε|A(t)|2 �A(t)

Ajkl(t0) = exp
(
−1/γ2((j − j1)2 − (k − k1)2 − (l − l1)2)

)
+ exp

(
−1/γ2((j − j2)2 − (k − k2)2 − (l − l2)2)

)
,

(7.1)

where A(t) ∈ Rn1×n2×n3 with ni = 100 for all i ∈ {1, 2, 3}. The bounded linear op-
erator L : Rn1×n2×n3 → Rn1×n2×n3 describes the interaction between the grid points
centred at (j, k, l) for all j, k, l = 1, . . . , 100. It is defined component-wise as

L[A](j, k, l) = A(j − 1, k, l) +A(j + 1, k, l) +A(j, k − 1, l) +A(j, k + 1, l)

+A(j, k, l − 1) +A(j, k, l + 1),

16 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

where terms with indices outside the range from 1 to 100 are interpreted as 0. Com-
pared to the more standard seven-point stencil for the discrete Laplace operator in
three dimensions, the operator L does not take the centred grid point into account.
The entries of the tensor |A|2 are the squares of the absolute values of the correspond-
ing entries of A, and the � in |A|2 � A denotes the entrywise (Hadamard) product.
The parameter ε determines the degree of nonlinearity.

We consider two excitations of the system, which are located at grid-points
(j1, k1, l1) = (75, 25, 1) and (j2, k2, l2) = (25, 75, 100). We take γ = 10.

To compute a low-rank approximation Y (t) ∈ M with multilinear rank r =
(10, 10, 10) to the solution of the nonlinear differential equation (7.1), we apply our
nested Tucker integrator (Alg. 3.1) to (7.1). The differential equations appearing in
the substeps of each mode are solved by the 4th order Runge–Kutta method with time
step size h = 10−3. This approximate solution is compared to a full rank reference
solution, which is also computed by a 4th order Runge–Kutta method, but with
h = 0.5 · 10−3. In Table 7.1 we show the error behavior for different parameters ε and
time step sizes h:

ε \ h 1 10−1 10−2 10−3

1 4.59e-1 4.01e-2 3.88e-2 3.88e-2
10−1 9.39e-2 9.68e-4 1.61e-4 1.47e-4
10−2 9.27e-3 3.20e-5 2.19e-6 1.30e-6
10−3 5.36e-4 3.18e-6 8.93e-8 3.54e-8
10−4 5.12e-5 2.73e-7 3.23e-9 1.91e-9

Table 7.1
Error in Frobenius norm at t = 1 of the rank-(10,10,10) Tucker integrator applied to (7.1).

For each time step size h, we see the error decaying with ε. This observation
is due to the fact that the linear term L[A(t)] in (7.1) maps onto the tangent-space
TYM of the manifold M of multilinear rank. The nonlinear term is of full rank, but
it is controlled by the factor ε. This makes the dependence of the error behaviour on
ε explicit. We also see in the first row, that the error stagnates from time step size
h = 10−2 on and this shows the dominance of the perturbation factor ε. We would
observe the same behaviour for smaller ε, but for smaller time step sizes.

Finally, in the last row, where the influence of ε is small, we observe convergence
of the error in terms of the time step size h.

7.2. Approximate addition of tensors. Let A ∈ Cn1×···×nd be a tensor of
multilinear rank r = (r1, . . . , rd) and let B ∈ Cn1×···×nd . We consider the addition of
the two given tensors, which results in

C = A+B,(7.2)

where C typically is not of low rank. We aim to find an approximation tensor of mul-
tilinear rank r. Such a computation is for example required in optimization problems
on low-rank manifolds, under the name of retractions, and need to be computed in
each iterative step [1]. There, the increment is typically a tangential tensor B ∈ TAM,
which after adding directly as in (7.2) yields a tensor C of multilinear rank 2r. Af-
terwards, the result is projected onto M by an SVD-based rank-r approximation in
order to obtain an approximation tensor D ∈M. With this procedure, we first leave
the low-rank manifold and then project back onto M.

TIME INTEGRATION OF RANK-CONSTRAINED TUCKER TENSORS 17

Instead, we propose to apply one time step of the nested Tucker integrator starting
with t0 = 0 and with time step size h = 1 in order to solve

.
Y (t) = P (Y)B, Y (t0) = A.

This gives an approximate solution Y 1 ∈ M for the result of the direct addition
(7.2). Contrary to the standard approach, we never leave the low-rank manifold when
applying the nested Tucker integrator.

For our numerical example, we initialise A as a random Tucker tensor of size 100×
100×100 and multi-linear rank r = (10, 10, 10). The increment B is constructed to be
a random tensor in the tangent space TAM. We compare the full rank addition (7.2)
with the low-rank approximation Y 1 ∈ M obtained by the nested Tucker integrator.
We also compare those results with the retracted rank-2r result, for which we perform
a best rank-r approximation. The figure below illustrates those comparisons:

10-210-1100

||B||

10-8

10-7

10-6

10-5

10-4

10-3

10-2

er
ro

r

Fig. 7.1. Errors for tensor addition for tangential increments B of decreasing norm.

We observe that the errors decrease with decreasing norm of the increment tensor
B. We also see that the difference between the errors of the splitting integrator and
the projected direct addition is marginal — or rather we do not see it because the
error curves of both approaches are not distinguishable in the figure.

Acknowledgement. This work was supported by a grant from DFG through
the GRK 1838. We thank Balázs Kovács for helpful discussions about numerical
examples.

REFERENCES

[1] P.-A. Absil and I. V. Oseledets. Low-rank retractions: a survey and new results. Comput.
Optim. Appl., 62, 2014.

[2] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM journal on Matrix Analysis and Applications, 21:1253–1278, 2000.

[3] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete. Unifying time
evolution and optimization with matrix product states. Physical Review B, 94, 2016.

[4] E. Kieri, C. Lubich, and H. Walach. Discretized dynamical low-rank approximation in the
presence of small singular values. SIAM J. Numer. Anal., 54:1020–1038, 2016.

[5] E. Kieri and B. Vandereycken. Projection methods for dynamical low-rank approximation of
high-dimensional problems. Tech. report (submitted), 2017.

18 CH. LUBICH, B. VANDEREYCKEN AND H. WALACH

[6] B. Kloss, I. Burghardt, and C. Lubich. Implementation of a novel projector-splitting integrator
for the multi-configurational time-dependent hartree approach. The Journal of Chemical
Physics, 146, 2017.

[7] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM J. Matrix Anal. Appl.,
31:2360–2375, 2010.

[8] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51:455–
500, 2009.

[9] C. Lubich. Time integration in the multiconfiguration time-dependent hartree method of molec-
ular quantum dynamics. Applied Mathematics Research eXpress, 2015:311–328, 2015.

[10] C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical low-rank approx-
imation. BIT, 54:171–188, 2014.

[11] C. Lubich, I. V. Oseledets, and B. Vandereycken. Time integration of tensor trains. SIAM
Journal on Numerical Analysis, 53:917–941, 2015.

[12] H.-D. Meyer, F. Gatti, and G. A. Worth. Multidimensional quantum dynamics. John Wiley &
Sons, 2009.

[13] A. Trombettoni and A. Smerzi. Discrete solitons and breathers with dilute Bose–Einstein
condensates. Phys. Rev. Lett., 86:2353–2356, 2001.

	Introduction
	The matrix projector-splitting integrator
	The nested Tucker integrator
	Derivation of the integrator
	Practical algorithm

	An exactness property of the integrator
	Error bounds for the nested Tucker integrator
	Equivalence with the tensor projector-splitting integrator of L15
	Numerical experiments
	A discrete nonlinear Schrödinger equation
	Approximate addition of tensors

	References

