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Abstract. Two numerical approximation schemes for minimising the Mumford-Shah functional for
unit vector fields are proposed, analysed, and compared. The first uses a projection strategy, the

second a penalisation strategy to enforce the sphere constraint. Both schemes are then applied to the

segmentation of colour images using the Chromaticity and Brightness colour model.

1. Introduction

For Ω ⊂ Rd, and γ, α, λ positive constants, we are interested in numerically minimising the following
weak version of the Mumford-Shah energy functional:

(1.1) G(u) :=
γ

2

∫
Ω

|∇u|2dx + αHd−1(Su) +
λ

2

∫
Ω

|u− g|2dx,

with u,g ∈ GSBV (Ω,Rm), and |u|2 = 1 a.e. (see Section 2 for definitions). This is a prototype problem
for studying interesting effects with applications in image processing (see e.g. [43, 44, 8, 10, 19, 50, 7]),
and liquid crystal theory (see e.g. [39, 42, 21, 51, 1, 6, 16]).

We are sometimes going to refer to functional (1.1) as the “Mumford-Shah” functional. It is, in fact,
a version (for sphere-valued functions) of a functional proposed by De Giorgi, Carriero, and Leaci in [27]
(for scalar functions) as a weak formulation of the original functional proposed by Mumford and Shah
in [43] for greyscale image segmentation,

(1.2) E(u,K) :=
γ

2

∫
Ω\K

|∇u|2dx + αHd−1(K) +
λ

2

∫
Ω

(u− g)2dx,

with g ∈ L2(Ω), which is to be minimised for all closed sets K ⊂ Ω, and functions u ∈ H1(Ω \K). It is
shown in [27] that the two problems are essentially equivalent.

The goal of image segmentation is to partition images into meaningful regions, which is often done by
finding the edges which bound these regions, and which are in our case identified with the set K. The
first term in (1.2) ensures smoothness of u outside of K, the second one ensures that there are not too
many edges, and the last term ensures that the segmented image u does not deviate too much from the
original one g.

A more concrete motivation for studying functional (1.1), therefore is colour image segmentation in
the Chromaticity and Brightness (CB) colour model, where the chromaticity (colour information) is
represented by an Sm−1-valued function (usually m = 3) on the image domain Ω. The brightness,
represented by a function b : Ω → [0, 1], can be separately treated just like a greyscale image. It has
been proposed that this model is well-suited for colour image processing. Osher and Vese [44] studied
p-harmonic flows to the sphere (p ≥ 1, in particular p ∈ {1, 2}), and applied them to image chromaticity,
for example; other sources include [19, 50, 7] and references therein.

The name free discontinuity problems was introduced by De Giorgi in [24] for variational problems like
(1.2), which consist of minimising a functional with volume and surface terms, depending on a closed set
K and a function u (usually smooth outside K). Other early sources include [26, 25]. Weak formulations
like (1.1) allow to prove existence of solutions (see [27] for the scalar, and [17] for the sphere-valued case),
but still require the computation of geometric properties of the unknown set of discontinuity boundaries.
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Therefore, Ambrosio and Tortorelli introduced an elliptic approximation in [3, 4], whose vectorial
version, if defined for sphere-valued functions, is to minimise

ATε(u, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx + α

∫
Ω

(
ε |∇s|2 +

1
4ε

(1− s)2
)

dx

+
λ

2

∫
Ω

|u− g|2 dx
(1.3)

for u,g ∈ H1
(
Ω,Sm−1

)
, s ∈ H1(Ω, [0, 1]), 0 < ε, kε ¿ 1, and kε = o(ε). Here, s is a phase function

approximating 1−χK by penalisation of phase transitions. Ambrosio and Tortorelli showed Γ-convergence
of ATε(u, s) to G(u) in L2 in the scalar ([3, 4]), as well as the Sm−1-valued case ([4]) for ε→ 0.

Bellettini and Coscia carried out a finite element approximation of the Mumford-Shah functional
in the scalar case, based on this elliptic approximation in [8]. They showed that their approximation
Gε,h : V h(Ω) × V h(Ω, [0, 1]) → R is Γ-convergent to G : H1(Ω) × H1(Ω) → R provided that the mesh
size fulfils h = o(kε), and that Su is piecewise C2. Here, V h(Ω) is the continuous, piecewise affine finite
element space. Using the approximation result in [28], Bourdin in [10] showed that Su does not need to
be assumed piecewise C2; and he proposed an algorithm for actual computations — without providing
a proof for its convergence, though. The problem here is that the two variables u and s appear strongly
coupled in the energy and in the corresponding gradient flow.

As an alternative to the above phase-field approximation of the Mumford-Shah functional, Braides and
Dal Maso proposed a non-local approximation approach in [13], on which Cortesani based a Γ-convergent,
vector-valued finite element approximation in [22].

A different motivation for (1.3) comes from the theory of nematic liquid crystals. In order to overcome
mathematical difficulties in showing existence and regularity of energy minimising static configurations
in the Oseen-Frank model, Lin in [39] adapts Ericksen’s energy, which he simplifies to (see [39, equation
(3.12)]) ∫

Ω

1
2
s2|∇n|2 + |∇s|2 +W0(s) dx

with variable degree of orientation s ∈ [−1/2, 1] (in experiments, often s ≥ 0), and director n, |n| = 1
a.e. The strong similarities of this energy to functional (1.3) lets us hope that our analysis may be of
use to this application, too.

The overall goal of the present work is to construct and analyse convergent discretisations for a proto-
type problem with several non-convexities; namely, we consider a non-convex functional (the Mumford-
Shah functional) with a non-convex constraint (the sphere constraint), as an extension to existing work
on convex functionals (in particular harmonic maps) with non-convex constraints, which have been in-
tensely studied (see e.g. [1, 5, 6] and references therein). In particular, we deal with discretisations of the
sphere constraint, which we account for using a projection and a penalisation strategy. The former turns
out to deliver more convincing computational results, while the latter is analytically more satisfactory.

Below, we give a short overview over the two methods for the approximation of (1.1) that we shall
present in Sections 3 – 7 of this paper, where we in particular discuss relevant stability properties of
computed approximations, such as

• energy decay property for splitting schemes related to (1.3),
• the validity of a discrete or penalised sphere constraint for approximations of u, and
• non-negativity and upper bounds for approximations of the phase field function s.

1.1. Splitting & Projection Strategy. The problem of coupled variables is addressed through an
iterative splitting strategy; i.e., in every step of the iteration the energy is first minimised with respect
to the first variable while keeping the second variable fixed, and then minimised with respect to the
second variable while keeping the first one fixed. A special projection idea as proposed by Alouges in
[1] is used to enforce the sphere constraint. We propose a first-order finite element discretisation, which
preserves the sphere constraint exactly at nodal points. The resulting discrete algorithm is simple, results
in only linear equations to be solved in every step of the iteration, and every step is energy-decreasing
(for acute triangulations). The algorithm converges weakly (up to subsequences) in H1 ×H1 to a tuple
(u, s) ∈ H1

(
Ω,Sm−1

)
× H1(Ω). For d = 2 we can show that s and iterates Sn fulfil Sn, s ∈ [−1, 1].

However, we cannot show that (u, s) is a stationary point of the Ambrosio-Tortorelli energy for unit
vector fields.
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1.2. Penalisation & Splitting Strategy. This method again uses a splitting strategy, but the sphere
constraint is now approximated by penalisation; i.e., we add a Ginzburg-Landau term 1

4δε

∫
Ω

(
|u|2 − 1

)2 dx
(0 < δ ¿ 1) to the energy (1.3). We show that for proper scales of δε in terms of ε, this does not affect
Γ-convergence. Furthermore, we propose a first-order finite element algorithm based on this splitting
and penalisation strategy. The resulting algorithm converges weakly (up to subsequences) in H1 ×H1

to a tuple (u, s) ∈ H1(Ω,Rm)×H1(Ω), without any mesh-constraint. For d = 2 we can also show that
Sn, s ∈ [−1, 1]. This allows to get strong convergence (up to subsequences) of iterates Un in H1, which
in turn allows to pass to the limit and show that (u, s) is a stationary point of the Ambrosio-Tortorelli-
Ginzburg-Landau energy, and that s ≥ 0. However, we now have to solve a nonlinear equation in every
iteration.

In Section 6, comparative computational experiments for the“Penalisation & Splitting”and the“Split-
ting & Projection” methods are presented, which address in particular

(1) the effect of perturbing the sphere constraint throughout minimisation, as well as proper scalings
of regularisation and numerical parameters;

(2) the accuracy of zero sets of s in the course of minimisation; and
(3) comparative numerical studies to relate the CB and RGB models in colour image segmentation.

2. Preliminaries

We often use c and C as generic non-negative constants, capital letters for finite element functions and
boldface for vectors or vector-valued functions. Given x,y ∈ Rd, 〈x,y〉 or x ·y will denote their standard
scalar product, and |x| the Euclidean norm of x. For a set S, |S| or Ld(S) denotes its Lebesgue measure
of dimension d, Hd(S) its Hausdorff measure. The L2 scalar product and norm will be denoted by (·, ·)
and ‖ · ‖, respectively, and Sm−1 will be the unit sphere in Rm. For a, b ∈ R, let a ∧ b := min{a, b}, and
a∨ b := max{a, b}. By A : B for A,B ∈ Rm×m we denote the dyadic product; i.e., A : B :=

∑m
i,j=1 aijbij

for A = (aij), B = (bij). Let |A| denote the Frobenius norm of A; i.e., |A|2 :=
∑m

i,j=1 |aij |2. For two
vectors a ∈ Rd, b ∈ Rm, let a⊗ b := M denote the matrix with entries mij := aibj .

2.1. Functions of Bounded Variation and Γ-Convergence. We summarise some definitions and
results on functions of bounded variation and Γ-convergence. Sources are e.g. [2, 35, 30, 23, 11, 12, 18].

2.1.1. BV, SBV, and GSBV Functions. Let Ω ⊂ Rd be a bounded open set, u : Ω → Rm a measurable
function, S := Rm ∪ {∞}, and x ∈ Ω be fixed. We call z ∈ S the approximate limit of u at x, or
z = ap− lim

y→x
u(y), if for every neighbourhood U of z ∈ S we have

lim
%→∞

1
%n
|{y ∈ Ω : |y − x| < %,u(y) /∈ U}| = 0.

If z ∈ Rm, we call x a Lebesgue point of u, and we denote by Su the complement of the set of Lebesgue
points of u (approximate discontinuity set). Since |Su| is known to be zero, u = ũ a.e. for

ũ(x) := ap− lim
y→x
y∈Ω

u(y).

Let x ∈ Ω \ Su such that ũ(x) 6= ∞. If there exists L ∈ Rd×m such that

ap− lim
y→x
y∈Ω

|u(y)− ũ(x)− L(y − x)|
|y − x|

= 0,

we call u approximately differentiable in x, and ∇u(x) := L the (uniquely determined) approximate
gradient of u in x. A function u ∈ L1(Ω,Rm) is called a function of bounded variation in Ω, or
u ∈ BV (Ω,Rm), if its distributional derivativeDu is representable by a measure with finite total variation
|Du| (Ω); i.e., if

m∑
α=1

∫
Ω

uαdiv (ϕα) dx = −
m∑

α=1

d∑
i=1

∫
Ω

ϕα
i dDiu

α ∀ϕ ∈ C1
c

(
Ω,Rm×d

)
,

with Du an Rd×m valued matrix of measures Diu
α, and u = (u1, . . . , um). Defining

‖u‖BV(Ω,Rm) := ‖u‖L1(Ω,Rm) + |Du|(Ω),

makes BV (Ω,Rm) a Banach space.
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If {uj} ⊂ BV (Ω,Rm) with supj ‖uj‖BV(Ω,Rm) < +∞, then there exist a subsequence {ujk
} and a

function u ∈ BV (Ω,Rm) such that ujk
→ u in L1(Ω,Rm), and Dujk

→ Du weakly-∗ in the sense of
measures.

Also, for u ∈ BV (Ω,Rm), Su is countably Hd−1-rectifiable; i.e.,

Su = N ∪
⋃
i∈N

Ki,

where Hd−1(N) = 0, and each Ki is a compact subset of a C1 manifold. So, for Hd−1-a.e. y ∈ Su we
can define an exterior unit normal νννu and outer and inner traces of u on Su by

u±(x) := ap− lim
y→x

y∈π±(x,νννu(x))

u(y),

with π±(x, νννu(x)) :=
{
y ∈ Rd : ±〈y − x, νννu(x)〉 > 0

}
. A point x ∈ Ω is called a jump point of u, x ∈ Ju,

if there exists ννν ∈ Sd−1, such that

ap− lim
y→x

y∈π−(x,ννν)

u(y) 6= ap− lim
y→x

y∈π+(x,ννν)

u(y).

It is known that Ju ⊆ Su, and Hd−1(Su \ Ju) = 0.
If we decompose Du into an absolutely continuous part Dau and a singular part Dsu, both with

respect to the Lebesgue measure Ld, Du = Dau+Dsu, the density of Dau with respect to Ld coincides
with the approximate gradient ∇u Ld-a.e. The restriction Dju of Dsu to Su is called jump part of Du,
the restriction Dcu of Dsu to Ω \ Su it called Cantor part. So,

Du = Dau +Dju +Dcu.

It is known that Dju = (u+ − u−)⊗ νννuHd−1bSu.
A function u ∈ BV (Ω,Rm) is called a special function of bounded variation in Ω, u ∈ SBV (Ω,Rm), if

Dcu = 0. We call u ∈ BV (Ω,Rm) a generalised special function of bounded variation, u ∈ GSBV (Ω,Rm),
if g(u) ∈ SBV (Ω,Rm) for every g ∈ C1(Rm) such that ∇g has compact support. For 1 < p < +∞, let

(G)SBV p(Ω,Rm) :=
{
u ∈ (G)SBV (Ω,Rm) : Hd−1(Ju) < +∞, ∇u ∈ Lp

(
Ω,Rd×m

)}
.

We remark that W 1,1(Ω,Rm) ( BV (Ω,Rm), that u ∈ SBV (Ω, Rm) implies u ∈ W 1,1
(
Ω \ Su,Rm

)
,

and that SBV (Ω,Rm) ∩ L∞(Ω,Rm) = GSBV (Ω,Rm) ∩ L∞(Ω,Rm).

2.1.2. Γ-Convergence. Let X be a separable Banach space with a topology τ and let Fε : X → R be a
sequence of functionals. We say Fε Γ-converges to F in the topology τ , or F = Γ−lim

ε→0
Fε, if the following

two conditions hold:
(1) For every x ∈ X and for every sequence {xε} ⊂ X τ -converging to x ∈ X,

F (x) ≤ lim inf
ε→0

Fε (xε) ,

(2) For every x ∈ X there exists a sequence {xε} ⊂ X (recovery sequence) τ -converging to x ∈ X,
such that

F (x) ≥ lim sup
ε→0

Fε (xε) .

Lemma 2.1. Let Fε, F : X → R, with Γ− lim
ε→0

Fε = F . Then

(1) F is lower semicontinuous on X.
(2) F +G = Γ− lim (Fε +G) for all continuous G : X → R.
(3) Let {uε} ⊂ X be such that

lim
ε→0+

(
Fε(uε)− inf

X
Fε

)
= 0,

then every cluster point u of {uε} minimises F over X, and

lim
ε→0+

inf
X
Fε = min

X
F = F (u).

Here are some connections between Γ-convergence and pointwise convergence:
• If Fε converges uniformly to F , then Fε Γ-converges to F .
• If Fε is decreasing and converges pointwise to F , then Fε Γ-converges to RF , the lower semicon-

tinuous envelope of F .
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3. Splitting & Projection Algorithm

Let Ω ⊂ Rd be a polyhedral Lipschitz domain, and Th be a quasi-uniform triangulation of Ω with
node set N and maximal mesh size h > 0 (c.f. [14]). The space of globally continuous, piecewise
affine finite element functions on Th is denoted by Vh(Ω) ⊆ H1(Ω). The nodal basis functions are
{ϕz : z ∈ N} ⊆ Vh(Ω). Let Vh(Ω,Rm) be the finite element space of Rm-valued mappings with ba-
sis functions

{
ϕϕϕi

z : z ∈ N , 1 ≤ i ≤ m
}
, with ϕϕϕ1

z := (ϕz, 0, . . .)
T ∈ Vh(Ω,Rm), ϕϕϕ2

z := (0, ϕz, 0, . . .)
T ∈

Vh(Ω,Rm), and so forth. Let Ih(·) : C0
(
Ω
)
→ Vh(Ω) be the Lagrange interpolation operator, and

Rh(·) : H1(Ω) → Vh(Ω) the Ritz projection, defined by

(∇ (Rh(ϕ)− ϕ) ,∇V ) + (Rh(ϕ)− ϕ, V ) = 0 ∀V ∈ Vh(Ω) ,

and rh(·) : L2(Ω) → Vh(Ω) the Clément operator [20] (IIIh(·), Rh(·), and rh(·) in the vector valued case).
The latter operator will be needed since it can be applied to non-continuous functions.

Lemma 3.1. The tuple (u, s) ∈ H1
(
Ω,Sm−1

)
×H1(Ω, [0, 1]) is a stationary point of ATε(·, ·) if and only

if

(3.1) γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
= λ(g,ϕϕϕ)

for all ϕϕϕ ∈ H1(Ω,Rm) such that ϕϕϕ(x) ∈ Tu(x)Sm−1 (the tangent space of Sm−1 at u(x)), and

(3.2) 2αε(∇s,∇ϕ) +
((
γ|∇u|2 +

α

2ε

)
s, ϕ
)

=
( α

2ε
, ϕ
)

for all ϕ ∈ H1(Ω) ∩ L∞(Ω).

Proof. Note u ·ϕϕϕ = 0 a.e. and derive the first variation of ATε(·, ·) with respect to u and s, respectively,
c.f. [49] and [15, Proposition 1]. ¤

The most natural approach to the discrete case would be to work with the original functional ATε(·, ·).
However, it is not clear how to get a uniform L∞ bound on iterates Sn in this setting. We therefore
introduce mass lumping into the last term: For G ∈ Vh(Ω,Rm), we define

Eh(U, S) :=
γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx

+α
∫

Ω

ε |∇S|2 +
1
4ε
Ih

(
(1− S)2

)
dx,

and
Ẽ(U, S) :=

γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx,

with γ, α, ε, kε fixed and positive, and λ ≥ 0. We also assume d ≤ 2, since so far, our arguments for the
L∞ bound on iterates Sn fail for higher dimensions (the rest of the analysis works for d ≤ 3), but we
hope it will be possible to improve these results (and possibly remove lumping altogether).

Another solution would be to use mass lumping in all nonlinear terms involving S; i.e., to use the
functional

γ

2

∫
Ω

(
Ih

(
S2
)

+ kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx

+ α

∫
Ω

ε |∇S|2 +
1
4ε
Ih

(
(1− S)2

)
dx.

This introduces additional errors, but it still allows to get the necessary uniform H1 bounds on iterates
(Un, Sn), in addition to the L∞ bound on Sn, and it does not require d ≤ 2; see [15] for details.

Functions V ∈ Vh(Ω,Rm) which satisfy the pointwise constraint |V| = 1 are necessarily constant. So
it is more reasonable to work in the space

H1
h(Th) :=

{
V ∈ Vh(Ω,Rm) : V(z) ∈ Sm−1 ∀ z ∈ N

}
.

We set
Kn

h := {W ∈ Vh(Ω,Rm) : W(z) ·Un(z) = 0 ∀ z ∈ N} ,
where Un ∈ H1

h(Th) will be the iterates of the fully discrete algorithm.
The idea now is to find U ∈ Kn

h minimising Ẽ(·, S) and then project to the sphere. This approach
is based on [1] and [5] and replaces the nonlinear, non-convex constraint U ∈ H1

h(Th) by the linear one
W(z) ·Un(z) = 0 ∀ z ∈ N , which in turn ensures that projection to the sphere does not increase the
energy.
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Algorithm 3.2. Let a quasi-uniform triangulation Th of Ω, starting values U0, S0, and parameters
ε, kε, % > 0 be given. For n := 0, . . .

(1) Minimise Ẽ(Un −W, Sn) for W ∈ Kn
h ; i.e. solve

(3.3) γ
((
S2

n + kε

)
∇ (Un −W) ,∇V

)
− λ (W + G,V) = 0,

for all V ∈ Kn
h , and call the solution Wn.

(2) If ‖Wn‖H1(Ω;Rm) ≤ % set U := Un, W := Wn, S := Sn and stop.
(3) Set

Un+1 :=
∑
z∈N

Un(z)−Wn(z)
|Un(z)−Wn(z)|

ϕϕϕz.

(4) Minimise Eh(Un+1, S) for all S ∈ Vh(Ω); i.e. solve

(3.4) 2αε (∇S,∇W ) + γ
(
S |∇Un+1|2 ,W

)
+
α

2ε
(S − 1,W )h = 0

for all W ∈ Vh(Ω), and call the solution Sn+1.

Here (ϕ,ψ)h :=
∫
Ω
Ih(ϕψ) dx for ϕ,ψ ∈ C(Ω).

Definition 3.3. Let Th be a quasi-uniform triangulation of Ω, and s ∈ H1(Ω) be fixed. Th is said to
satisfy an energy decreasing condition (ED) if

Eh(W, s) ≤ Eh(V, s)

for all V ∈ Vh(Ω,Rm) fulfilling |V(z)| ≥ 1 for z ∈ N .Here W ∈ Vh(Ω,Rm) is defined by

W :=
∑
z∈N

V(z)
|V(z)|

ϕz.

As demonstrated in [5, Lemma 3.2 & Remarks 3.3], for d ≤ 3 (ED) is fulfilled if every angle in Th is
≤ π/2 (i.e., if the triangulation is acute).

Lemma 3.4. Let U ∈ Vh(Ω,Rm) be given, and d ≤ 2. If S ∈ Vh(Ω) minimises Eh(U, ·), then −1 ≤
S ≤ 1.

Proof. For a ∈ R define a := −1 ∨ a ∧ 1. Note that for this result it is crucial that we have piecewise
affine finite element functions.

Step 1: If a, b ∈ R, then
(
a+ b

)2 ≤ (a+ b)2 and
(
a− b

)2 ≤ (a− b)2.
A case differentiation gives
• a, b ∈ [−1, 1] is trivial.
• a, b > 1 or a, b < −1 =⇒

(
a+ b

)2
= 22 ≤ (a+ b)2.

• a > 1, b < −1 =⇒
(
a+ b

)2
= 0 ≤ (a+ b)2,

and b > 1, a < −1 is symmetrical.
• a /∈ [−1, 1], b ∈ [−1, 1] =⇒ 0 ≤ 1 + sign(ab)|b| ≤ |a|+ sign(ab)|b|,

=⇒
(
a+ b

)2
= (1 + sign(ab)|b|)2 ≤ (|a|+ sign(ab)|b|)2 = (a+ b)2,

and b /∈ [−1, 1], a ∈ [−1, 1] is symmetrical.

Therefore
(
a+ b

)2 ≤ (a+ b)2, and
(
a− b

)2 ≤ (a− b)2 follows by symmetry.

Step 2: We have −1 ≤ S ≤ 1.
In case −1 ≤ S ≤ 1 should not be true, we replace S(x) =

∑
z∈N S(z)ϕz(x) by

S(x) :=
∑
z∈N

(−1 ∨ S(z) ∧ 1)ϕz(x) = Ih(−1 ∨ S ∧ 1) ,

for which clearly −1 ≤ S ≤ 1. We shall prove Eh

(
U, S

)
≤ Eh(U, S), by showing energy-decrease for

every term involving S, on every triangle T ∈ Th. Since ∇U is constant on every T , the terms we have to
look at are

∫
T
S2dx,

∫
T
|∇S|2 dx, and

∫
T
Ih

(
(1− S)2

)
dx. Let the values of S at the nodal points of T

be S0, . . . , Sd, let S0, . . . , Sd be the corresponding values of S, let ϕ0, . . . , ϕd be the corresponding nodal
basis functions, and x := (x1, . . . , xd). By a simple transformation argument, we can restrict ourselves
to the standard simplex, which we shall still call T . Then

S(x)|T = S0 +
d∑

i=1

(Si − S0)xi,
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and
∇S(x)|T = (S1 − S0, . . . , Sd − S0) ,

For the first term, a calculation yields

(3.5)
∫

T

S2dx =
2

(d+ 2)!

d∑
i=0

Si

d∑
j=i

Sj .

If d = 1, then, by Step 1, ∫
T

S
2
dx =

1
3

(
S

2

0 + S0S1 + S
2

1

)
=

1
6

((
S0 + S1

)2
+ S

2

0 + S
2

1

)
≤ 1

6

(
(S0 + S1)

2 + S2
0 + S2

1

)
=

∫
T

S2dx.

Similarly, if d = 2, ∫
T

S
2
dx =

1
12

(
S

2

0 + S
2

1 + S
2

2 + S0S1 + S0S2 + S1S2

)
=

1
24

((
S0 + S1

)2
+
(
S0 + S2

)2
+
(
S1 + S2

)2)
≤ 1

24

(
(S0 + S1)

2 + (S0 + S2)
2 + (S1 + S2)

2
)

=
∫

T

S2dx.

Note: Both arguments break down for d ≥ 3; in fact, counter-examples are easy to find, c.f. Remark 3.5.
The second term gives, by Step 1 and symmetry,∫

T

|∇S|2dx =
∫

T

(
S1 − S0, . . . , Sd − S0

)2
dx

=
1
d!

((
S1 − S0

)2
+ · · ·+

(
Sd − S0

)2)
≤ 1

d!

(
(S1 − S0)

2 + · · ·+ (Sd − S0)
2
)

=
∫

T

|∇S|2.

As for the last term, again by Step 1,∫
T

Ih

(
(1− S)2

)
dx =

d+1∑
i=1

(
1− Si

)2 ∫
T

ϕidx

≤
d+1∑
i=1

(1− Si)
2
∫

T

ϕidx =
∫

T

Ih

(
(1− S)2

)
dx.

¤

Remark 3.5. For d = 3, Step 2 in the above proof is wrong: Let S0 := S1 := S2 := 1, and S3 := −3/2.
Then, by (3.5), ∫

T

S
2
dx =

1
60

d∑
i=0

Si

d∑
j=i

Sj =
1
15

,

while ∫
T

S2dx =
1
60

d∑
i=0

Si

d∑
j=i

Sj =
1
16

.

We suspect that there exist dimension-dependent constants cd, at which one could crop |S|, so that the
energy is still decreasing (also replacing (1− s)2 by (cd − s)2).
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Lemma 3.6. Let Th be a quasi-uniform triangulation of Ω satisfying (ED), % > 0 fixed, S0 ∈ Vh(Ω),
and U0 ∈ H1

h(Th). Then Algorithm 3.2 terminates within a finite number of iterations with output
(U, S) ∈ H1

h(Th)×Vh(Ω, [−1, 1]) and W ∈ Vh(Ω,Rm) such that ‖∇W‖ ≤ %, and Eh(U, S) ≤ Eh(U0, S0).

Proof. We proceed by induction. Suppose that for some n ≥ 0 we have (Un, Sn) ∈ H1
h(Th)×Vh(Ω). The

set Kn
h is a subspace of Vh(Ω,Rm). Therefore, by Lax-Milgram, there is a unique Wn ∈ Kn

h such that
(3.3) is fulfilled. Since Wn(z) ·Un(z) = 0 and |Un(z)| = 1, we have for z ∈ N

|Un(z)−Wn(z)|2 = 1 + |Wn(z)|2 ≥ 1.

Therefore, Un+1 is well-defined and in H1
h(Th). And since 0 ∈ Kn

h and Th fulfils (ED), we get

Eh(Un+1, Sn) ≤ Eh(Un −Wn, Sn) .

Step 4 of Algorithm 3.2 has a solution Sn+1 by convexity and coercivity of the functional. So

Eh(Un+1, Sn+1) ≤ Eh(Un+1, Sn) ≤ Eh(Un −Wn, Sn) ≤ Eh(Un, Sn) .

In fact, Eh(Un+1, Sn+1) ≤ Eh(Un+1,W ) for all W ∈ Vh(Ω). Therefore, by Lemma 3.4, we can assume
−1 ≤ Sn+1 ≤ 1. Furthermore,

I :=2Ẽ(Un+1, Sn+1)− 2Ẽ(Un, Sn)

≤ 2Ẽ(Un −Wn, Sn)− 2Ẽ(Un, Sn)

≤ γ

∫
Ω

(
S2

n + kε

) (
|∇Un|2 + |∇Wn|2 − 2∇Un : ∇Wn

)
dx

+ λ

∫
Ω

|Un|2 + |Wn|2 + |G|2 − 2G · (Un −Wn)− 2Un ·Wndx

−
∫

Ω

γ
(
S2

n + kε

)
|∇Un|2 + λ

(
|Un|2 + |G|2 − 2G ·Un

)
dx

=
∫

Ω

γ
(
S2

n + kε

) (
|∇Wn|2 − 2∇Un : ∇Wn

)
+ λ

(
|Wn|2 + 2Wn · (G−Un)

)
dx.

Using equation (3.3) with V := Wn, we get

I ≤ −
∫

Ω

γ
(
S2

n + kε

)
|∇Wn|2 + λ |Wn|2 dx,

whence
0 ≤ 1

2

∫
Ω

γ
(
S2

n + kε

)
|∇Wn|2 + λ |Wn|2 dx ≤ Ẽ(Un, Sn)− Ẽ(Un+1, Sn+1) .

Summing this from 0 to N leads to

1
2

N∑
n=0

∫
Ω

γ
(
S2

n + kε

)
|∇Wn|2 + λ |Wn|2 dx ≤ Ẽ(U0, S0)− Ẽ(UN+1, SN+1) < +∞;

i.e., the series
1
2

∑
n≥0

∫
Ω

γ
(
S2

n + kε

)
|∇Wn|2 + λ |Wn|2 dx

is convergent. Therefore, ‖Wn‖H1(Ω;Rm) ≤ % for n large enough. ¤

Theorem 3.7. Let {Thl
} be a sequence of quasi-uniform triangulations satisfying (ED) with maximal

mesh size hl → 0 for l → +∞, %l → 0 for l → +∞, and Ehl
(U0, S0) ≤ C0 < +∞ independently

of hl. Let {Ul, Sl} be the output of Algorithm 3.2 (after termination) from input
(
U0

l , S
0
l , %l

)
. Then

the sequence {Ul, Sl} converges weakly in H1(Ω,Rm) × H1(Ω) (up to subsequences, not relabelled) for
l → +∞ to a point (u, s) ∈ H1

(
Ω,Sm−1

)
× H1(Ω, [−1, 1]), with ATε(u, s) ≤ lim inf lATε(Ul, Sl) ≤

lim inf lATε

(
U0

l , S
0
l

)
.

Proof. By assumption and Lemma 3.6, we have

Ehl
(Ul, Sl) ≤ Ehl

(
U0

l , S
0
l

)
≤ C0,

and −1 ≤ Sl ≤ 1. This implies uniform boundedness of H1-norms of iterates Ul and Sl. Hence we
can extract a subsequence that converges weakly in H1 ×H1 to some map (u, s). Poincaré’s inequality
(elementwise), |Ul(z)| = 1 for all z ∈ Nhl

, and |Ul| ≤ 1 a.e. imply∥∥∥|Ul|2 − 1
∥∥∥ ≤ Chl

∥∥2UT
l ∇Ul

∥∥ ≤ Chl.
8



So Ul → u a.e. leads to |u| = 1 a.e.
Since H1(Ω) is a Hilbert space and

{
ϕ ∈ H1(Ω) : 0 ≤ ϕ ≤ 1 a.e

}
⊂ H1(Ω) is a closed, convex set, it

is weakly closed. Therefore, by the weak convergence in H1 of Sl ⇀ s, we get −1 ≤ s ≤ 1.
Finally, by weak lower semicontinuity of ATε(·, ·),

ATε(u, s) ≤ lim inf
l

ATε(Ul, Sl)

≤ lim inf
l

(
Ehl

(Ul, Sl) + c
∥∥∥Ih

(
(1− Sl)

2
)
− (1− Sl)

2
∥∥∥

L1(Ω)

)
≤ lim inf

l

(
Ehl

(
U0

l , S
0
l

)
+ chl ‖Sl‖L2(Ω) ‖∇Sl‖L2(Ω)

)
≤ lim inf

l
Ehl

(
U0

l , S
0
l

)
≤ lim inf

l

(
ATε

(
U0

l , S
0
l

)
+ chl

∥∥S0
l

∥∥
L2(Ω)

∥∥∇S0
l

∥∥
L2(Ω)

)
≤ lim inf

l
ATε

(
U0

l , S
0
l

)
.

¤

Remark 3.8. We cannot prove that (u, s) is a stationary point of ATε(·, ·). In particular, equation (3.4)
in Step 4 of Algorithm 3.2 is

2αε (∇S,∇W ) + γ
(
S |∇Un+1|2 ,W

)
+
α

2ε
(S − 1,W )h = 0

for all W ∈ Vh(Ω). Identifying limits on a term by term basis would require identifying the limit

lim
n→+∞

(
|∇Un+1|2 Sn,W

)
,

which so far we have to leave as an open problem.
What is missing for this identification of limits is strong convergence of ∇Un in L2. This is a

fundamental shortcoming also observed in [1, 5] for the simpler case of harmonic maps to the sphere. In
fact, we are not aware of any algorithm, even in the harmonic mapping case, that simultaneously gives
strong convergence of ∇Un in L2 and assures the sphere constraint exactly.

However, the algorithm converges, decreases the energy, assures the sphere constraint exactly and
delivers very convincing computational results (indeed, it is faster and delivers better results than the
alternative algorithm described in the sequel, c.f. Section 6).

4. Γ-Convergence for Penalisation & Splitting

In order to resolve the problems with passing to the limit, we now use a penalisation approach instead
of projection. This requires adding a term to the Ambrosio-Tortorelli energy, which penalises the sphere
constraint. In this section, we show that this addition does not affect Γ-convergence to the Mumford-Shah
functional, if the penalisation term is properly scaled.

Let Ω ⊂ Rd, γ, α, λ be fixed positive constants, ε, δε > 0, kε ≥ 0, g ∈ L∞
(
Ω,Sm−1

)
, and Gε, G :

L2(Ω,Rm)× L2(Ω) → [0,+∞] be defined by

Gε(u, s) :=



γ

2

∫
Ω

(
s2 + kε

)
|∇u|2dx +

λ

2

∫
Ω

|u− g|2dx if u ∈ H1(Ω,Rm) ,

+α
∫

Ω

(
ε|∇s|2 +

(1− s)2

4ε

)
dx s ∈ H1(Ω, [0, 1]),

+
1

4δε

∫
Ω

(
|u|2 − 1

)2
dx

+∞, otherwise,

and

G(u, s) :=


γ

2

∫
Ω

|∇u|2dx + αHd−1(Su) +
λ

2

∫
Ω

|u− g|2dx if u ∈ GSBV
(
Ω,Sm−1

)
and s = 1 a.e.

+∞, otherwise.
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Theorem 4.1. If Ω ⊂ Rd is open and bounded with Lipschitz boundary, δε −→
ε→0

0, kε = o(ε), and

kε = o(δε), then Gε
Γ−→

ε→0
G in L2(Ω,Rm)× L2(Ω).

Moreover, there exists a solution {uε, sε} to the minimum problem

mε = inf
u∈H1(Ω,Rm),

s∈H1(Ω,[0,1])

Gε(u, s)

with ‖uε‖L∞ ≤ C, and every cluster point of {uε} is a solution to the minimum problem

m = inf
u∈GSBV(Ω,Sm−1)

G(u, 1),

and mε → m as ε→ 0+.

For the lim inf inequality we can apply the work of Focardi ([32, Lemma 3.3]). For the lim sup
inequality we use the same construction as Ambrosio and Tortorelli in [3], so it is enough to verify that
the penalisation term we added vanishes for ε→ 0+. This is explained in more detail below.

Proof. For notational convenience, we first localise the functionals above, denoting by Gε(u, s, A) and
G(u, s, A) the same functionals with integration over A ⊆ Ω instead of Ω, and Hd−1(Su) replaced by
Hd−1(Su ∩A).

Step 1: The Liminf Inequality.
Let ε → 0+, and (uε, sε) → (u, s) in L2(Ω,Rm) × L2(Ω). Up to subsequences, we can suppose that

(uε, sε) → (u, s) a.e., and that limε→0+ Gε (uε, sε) exists and is finite. We can further assume s = 1 a.e.,
since otherwise

∫
Ω

(1− sε)
2 dx 9 0, and Gε (uε, sε) →∞. Similarly, we get |u|2 = 1 a.e.

We now have to show
lim inf
ε→0+

Gε (uε, sε) ≥ G(u, s).

Since it is clear that
∫
Ω
|uε − g|2 dx →

∫
Ω
|u− g|2 dx, and that the penalisation term is non-negative,

it is sufficient to prove that u ∈ GSBV (Ω,Rm), and

lim inf
ε→0+

∫
Ω

(
s2ε + kε

)
|∇uε|2 dx + 2

∫
Ω

(
ε |∇sε|2 +

(1− sε)
2

4ε

)
dx

≥
∫

Ω

|∇u|2dx + 2Hd−1(Su) .

This was shown for a more general situation in [32, Lemma 3.3] (see also [33]).

Step 2: The Limsup Inequality.
It suffices to consider the case u ∈ SBV (Ω,Rm)∩L∞(Ω,Rm). We can also assume∇u ∈ L2

(
Ω,Rd×m

)
,

|u|2 = 1 a.e., and (see [33, Theorem 2.7.14]) that Su is essentially closed in Ω; i.e., Hd−1
(
Ω ∩

(
Su \ Su

))
=

0. Setting d(x) := dist(x, Su), we define the Minkowski content of Su

Md−1(Su) := lim
δ→0+

Md−1
δ (Su) := lim

δ→0+

|{x ∈ Ω : d(x) < δ}|
2δ

.

It is well-known that for Su essentially closed,

(4.1) lim
δ→0+

Md−1
δ (Su) = Hd−1(Su)

(see [31, Theorem 3.2.39]). So, there exists a sequence wε → 0+, such that

(4.2) |{x ∈ Ω : d(x) < δ}| ≤ 2δ
(
Hd−1(Su) + wε

)
,

for every δ ≥ 0 small enough.
Given such functions u, and s = 1 a.e., we have to construct {uε, sε} that converge in L2(Ω,Rm) ×

L2(Ω) to (u, s), such that
lim sup
ε→0+

Gε (uε, sε) ≤ G(u, s)

for any positive sequence ε converging to zero.
It is natural to require sε ≡ 0 in some ε-dependent neighbourhood of Su, sε converging to 1 everywhere

outside a larger neighbourhood of Su, and smooth in between, as well as uε ≡ u everywhere outside
some neighbourhood of Su.
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To this end, we use the same construction as in the paper [3] by Ambrosio and Tortorelli: Choose
a positive sequence bε, such that bε = o(ε), bε = o(δε), and kε = o(bε). For any b > 0, set Sb :=
{x ∈ Ω : d(x) < b}. Thanks to (4.2), |Sb| = O(b). For t ≥ bε, let

σε(t) := 1− exp
(
− t− bε

2ε

)
, so that

σ′ε(t) =
1
2ε

exp
(
− t− bε

2ε

)
.

We now set (c.f. Figure 1)

(4.3) sε(x) :=


0 if x ∈ Sbε

,
σε(d(x)) if x ∈ Sbε+2ε ln 1

ε
\ Sbε ,

1− ε if x ∈ Ω \ Sbε+2ε ln 1
ε
,

and

uε(x) := u(x) min
{
d(x)
bε

, 1
}

.

Note that 0 < 2ε ln 1
ε → 0+, and ε = o

(
2ε ln 1

ε

)
.

Figure 1. Sketch of sε(x) in the case Su = {0}, and d = 1.

By construction, (uε, sε) → (u, 1) in L2(Ω,Rm)× L2(Ω), as ε→ 0+.
Therefore, we have for the term penalising the sphere constraint,

(4.4)
1

4δε

∫
Ω

(
|uε|2 − 1

)2

dx ≤ c
|Sbε

|
δε

≤ c
bε
δε
→ 0.

So this term does not contribute to the lim sup. This calculation motivates why we cannot expect good
experimental results for δε too small (compared to bε, which in turn is between ε and kε); i.e., we have
to sacrifice something in terms of the sphere constraint, c.f. our experiments in Section 6.2.

The other terms are just like in the original paper [3].

Step 3: Convergence of Minimisers.
The functional Gε is coercive and lower semicontinuous in L2. So for every ε > 0 there exists a

minimising pair (uε, sε) of Gε. By a simple truncation argument, ‖uε‖L∞ ≤ C. As above, we can
assume that (uε, sε) ∈ SBV (Ω,Rm) × SBV (Ω) ∩ L∞(Ω,Rm) × L∞(Ω). By the SBV Closure and
Compactness Theorems [2, Theorems 4.7 and 4.8], there exists a subsequence

{
uεj

, sεj

}
converging to

some (u, 1) in L2(Ω,Rm) × L2(Ω), with u ∈ SBV (Ω,Rm). Thus, the stability of minimising sequences
under Γ-convergence (Lemma 2.1(3)) concludes the proof. ¤

5. Penalisation & Splitting Algorithm

Let Ω ⊂ Rd, be a polyhedral Lipschitz domain, and let g : Ω → Sm−1 be the chromaticity component
of a given image. For u,g ∈ H1(Ω,Rm), s ∈ H1(Ω, [0, 1]), and 0 < ε, kε, δε ¿ 1, we want to minimise

11



the following vector valued Ambrosio-Tortorelli-Ginzburg-Landau energy using a splitting strategy:

(5.1)
Gε(u, s) =

γ

2

∫
Ω

(
s2 + kε

)
|∇u|2 dx +

λ

2

∫
Ω

|u− g|2 dx

+α
∫

Ω

ε |∇s|2 +
1
4ε

(1− s)2dx +
1

4δε

∫
Ω

(
|u|2 − 1

)2
dx.

In this section, we shall always assume γ, α, ε, kε, δε to be fixed and positive, λ ≥ 0, and d ≤ 2 (the last
assumption is again only used to show that iterates Sn ∈ [−1, 1], and that their weak limit s ∈ [0, 1]).

Definition 5.1. A tuple (u, s) ∈ H1(Ω,Rm) × H1(Ω, [0, 1]) is called a weak solution to the problem
inf Gε, if and only if

(5.2) γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

1
δε

((
|u|2 − 1

)
u,ϕϕϕ

)
= 0

for all ϕϕϕ ∈ H1(Ω,Rm), and

(5.3) 2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) = 0

for all ϕ ∈ H1(Ω) ∩ L∞(Ω).

We use the same finite element setting as in Section 3, in particular, we shall always assume the
triangulation Th to be quasi-uniform. For U,G ∈ Vh(Ω,Rm) and S ∈ Vh(Ω, [−1, 1]), let

(5.4)
Gε,h(U, S) =

γ

2

∫
Ω

(
S2 + kε

)
|∇U|2 dx +

λ

2

∫
Ω

|U−G|2 dx

+α
∫

Ω

ε |∇S|2 +
1
4ε
Ih

(
(1− S)2

)
dx +

1
4δε

∫
Ω

(
|U|2 − 1

)2
dx.

In the algorithm below we use G := rh(g) ∈ Vh(Ω,Rm), i.e., the Clément interpolation of g. This
allows the use of non-smooth g. If g ∈ C0(Ω,Rm), the Lagrange interpolation would do as well.

Algorithm 5.2. Let U0,G ∈ Vh(Ω,Rm) and S0 ∈ Vh(Ω) be given. For n = 1, . . . until convergence do
(1) Compute Un ∈ Vh(Ω,Rm) such that

(5.5) γ
((
S2

n−1 + kε

)
∇Un,∇W

)
+ λ (Un −G,W) +

1
δε

((
|Un|2 − 1

)
Un,W

)
= 0

for all W ∈ Vh(Ω,Rm).
(2) Compute Sn ∈ Vh(Ω) such that

(5.6) 2αε (∇Sn,∇W ) + γ
(
Sn |∇Un|2 ,W

)
+
α

2ε
(Sn − 1,W )h = 0

for all W ∈ Vh(Ω).

We start with a discussion of relevant stability properties of iterates from Algorithm 5.2.

Lemma 5.3. Algorithm 5.2 decreases Gε,h with respect to n ∈ N.

Proof. For any n ∈ N fixed, Algorithm 5.2 ensures, that

Gε,h(Un+1, Sn+1) ≤ Gε,h(Un+1, Sn) ≤ Gε,h(Un, Sn) .

¤

The following existence and uniqueness result follows by standard coercivity and convexity arguments
for Gε,h (see e.g. [34, Section 8.4]). The fact −1 ≤ S ≤ 1 follows from Lemma 3.4.

Proposition 5.4. There exists a function U ∈ Vh(Ω,Rm), such that equation (5.5) holds for all W ∈
Vh(Ω,Rm), and a unique function S ∈ Vh(Ω, [−1, 1]), such that equation (5.6) holds for all W ∈ Vh(Ω).

Main convergence properties of iterates from Algorithm 5.2 are given in the following

Theorem 5.5. Let {Thl
} be a sequence of quasi-uniform triangulations with maximal mesh size hl → 0

for l → +∞, and Gε,hl

(
Ul

0, S
l
0

)
≤ C0 < +∞ independently of hl. Then the sequences

{
Ul

m, S
l
m

}
m,l

,
constructed by Algorithm 5.2 from inputs

(
Ul

0, S
l
0

)
have a (diagonal) subsequence called {Un, Sn}n,

such that Un converges strongly in H1(Ω,Rm), and Sn converges weakly in H1(Ω) to some (u, s) ∈
H1(Ω,Rm)×H1(Ω, [0, 1]), which is a weak solution as in Definition 5.1.
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For identifying limits in the proof of Theorem 5.5, it will be crucial to prove strong L2 convergence
of ∇Un to ∇u, for which we use a strategy derived from [15, Proof of Theorem 2], where the authors
show convergence of two adaptive, stationary finite element approximations for the minimisation of the
unconstrained Ambrosio-Tortorelli energy: In Step 2 we show that u fulfils equation (5.2), then we use
equations (5.2) and (5.5) and dominated convergence (c.f. Lemma 5.6, also derived from [15]) to show
strong L2 convergence of ∇Un to ∇u in Step 3, and finally we use this to show that s fulfils equation
(5.3) in Step 4.

Lemma 5.6. Let pn, p ∈ H1(Ω)∩L∞(Ω), such that ‖pn‖L∞(Ω) , ‖p‖L∞(Ω) ≤ C < +∞ a.e., independently
of n, and pn → p in L2(Ω). Then

lim
n

(
|pn − p| , |∇ϕϕϕ|2

)
= 0 ∀ϕϕϕ ∈ H1(Ω,Rm) .

Proof. See [15, Proof of Theorem 2]. ¤

Proof of Theorem 5.5. Step 1: For m, l → ∞, there is a subsequence {Un, Sn}, converging weakly in
H1(Ω,Rm)×H1(Ω) to some (u, s) ∈ H1(Ω,Rm)×H1(Ω, [−1, 1]).

For every m, l ∈ N, Proposition 5.4 gives existence of
(
Ul

m, S
l
m

)
and ensures that −1 ≤ Sl

m ≤ 1 a.e.
By Lemma 5.3 and by assumption,

Gε,hl

(
Ul

m, S
l
m

)
≤ Gε,hl

(
Ul

0, S
l
0

)
≤ C0,

independently of l,m. In particular, Gε,hn(Un
n, S

n
n) ≤ C0. So, by the definition of Gε,hn , the H1-norms

of Un
n and Sn

n are bounded independently of n. Therefore, since H1 is a Hilbert space, there exist
subsequences, called {Un} and {Sn}, which converge weakly in H1 to some (u, s) ∈ H1(Ω,Rm)×H1(Ω).

Finally, since H1(Ω) is a Hilbert space and
{
ϕ ∈ H1(Ω) : −1 ≤ ϕ ≤ 1 a.e

}
⊂ H1(Ω) is a closed, convex

set, it is weakly closed. Therefore, by the weak convergence in H1 of Sn ⇀ s, we get −1 ≤ s ≤ 1.
Below, we shall use the abbreviation h for hn.

Step 2: u solves equation (5.2).
Let ϕϕϕ ∈ C∞(Ω,Rm) be fixed, n ∈ N, and h > 0. Consider

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

1
δε

((
|u|2 − 1

)
u,ϕϕϕ

)
=: γT1 + λT2 +

1
δε
T3.

Since H1 is compactly embedded in Lp for p < 6, as long as the space dimension d ≤ 3, we have Un → u
in Lp(Ω,Rm) for p < 6.

We compute

T1 =
((
S2

n−1 + kε

)
∇Un,∇IIIh(ϕϕϕ)

)
+
((
s2 − S2

n−1

)
∇Un,∇ϕϕϕ

)
+
((
s2 + kε

)
∇ (u−Un) ,∇ϕϕϕ

)
+
((
S2

n−1 + kε

)
∇Un,∇ (ϕϕϕ−IIIh(ϕϕϕ))

)
=: Tn

11 + Tn
12 + Tn

13 + Tn
14.

Note that ‖ϕϕϕ−IIIh(ϕϕϕ)‖Hr(Ω,Rm) ≤ ch2−r
∥∥∇2ϕϕϕ

∥∥
L2(Ω,Rm)

for 0 ≤ r ≤ 2.

Since −1 ≤ Sn−1, s ≤ 1, we have
∣∣S2

n−1 − s2
∣∣ ≤ C |Sn−1 − s| ≤ C |Sn−1 − s|1/2, whence, by Lemma

5.6,

Tn
12 =

((
s2 − S2

n−1

)
∇Un,∇ϕϕϕ

)
≤ C

(
|s− Sn−1| , |∇ϕϕϕ|2

)1/2 ‖∇Un‖L2(Ω,Rm×d)
h→0−→

n→+∞
0.

Since s ≤ 1, we know that
(
s2 + kε

)
∇ϕϕϕ ∈ L2

(
Ω,Rd×m

)
, so Tn

13 =
(
∇ (u−Un) ,

(
s2 + kε

)
∇ϕϕϕ
)
→ 0,

by weak convergence. And since ‖ϕϕϕ−IIIh(ϕϕϕ)‖H1(Ω,Rm) → 0, using the bounds established in Step 1, the
terms Tn

14, T2, T3 all clearly vanish.
Putting all of the above together, we have for n ∈ N and h > 0 fixed,

γ
((
s2 + kε

)
∇u,∇ϕϕϕ

)
+ λ (u− g,ϕϕϕ) +

1
δε

((
|u|2 − 1

)
u,ϕϕϕ

)
=: γTn

13 + λTn
21 +

1
δε
Tn

31 + Tn,

where γTn
13 + λTn

21 + 1
δε
Tn

31 = 0 by construction. Now, letting n→ +∞ and h→ 0, we have Tn → 0, as
shown above. And by a density argument, the above is true for general ϕϕϕ ∈ H1(Ω,Rm).

Step 3: ∇Un → ∇u strongly in L2
(
Ω,Rm×d

)
, as n→ +∞ and h→ 0.
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Let n ∈ N and h > 0. Then

γkε ‖∇ (u−Un)‖2L2

≤ γ
((
S2

n−1 + kε

)
∇u,∇ (Rh(u)−Un)

)
−γ
((
S2

n−1 + kε

)
∇Un,∇ (Rh(u)−Un)

)
−λ (Un −G,Rh(u)−Un)− 1

δε

((
|Un|2 − 1

)
Un,Rh(u)−Un

)
+λ (Un −G,Rh(u)−Un) +

1
δε

((
|Un|2 − 1

)
Un,Rh(u)−Un

)
+γ
((
S2

n−1 + kε

)
∇ (u−Un) ,∇ (u−Rh(u))

)
=: Tn

1 + . . .+ Tn
7 .

By construction (equation (5.5) with W := Rh(u)−Un), the expression Tn
2 + Tn

3 + Tn
4 is zero.

Tn
1 = γ

((
S2

n−1 − s2
)
∇u,∇ (Rh(u)−Un)

)
+ γ

((
s2 + kε

)
∇u,∇ (Rh(u)−Un)

)
+λ (u− g,Rh(u)−Un) +

1
δε

((
|u|2 − 1

)
u,Rh(u)−Un

)
−λ (u− g,Rh(u)−Un)− 1

δε

((
|u|2 − 1

)
u,Rh(u)−Un

)
=: Tn

11 + . . .+ Tn
16.

By Step 2, Tn
12 + Tn

13 + Tn
14 = 0. Therefore

γkε ‖∇ (u−Un)‖2L2 ≤ Tn
11 + Tn

15 + Tn
16 + Tn

5 + Tn
6 + Tn

7 .

All of the above is true for any n ∈ N. Now, consider the limit n→ +∞ and h→ 0. Note that, by a
density-argument,

‖Rh(u)−Un‖X ≤ ‖Rh(u)− u‖X + ‖u−Un‖X
h→0−→

n→+∞
0,

for X = H1 and, by embedding, X = Lp (p < 6). Therefore we have, similarly to Step 2, that the
terms Tn

5 , T
n
6 , T

n
7 , T

n
15 and Tn

16 all vanish in the limit h → 0 and n → +∞. Finally, Tn
11 vanishes using

Lemma 5.6, as in Step 2, and the H1-stability of the Ritz projection.

Step 4: s solves equation (5.3), and 0 ≤ s ≤ 1.
Let ϕ ∈ C∞(Ω) be fixed, n ∈ N, and h > 0. Set

2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) := 2αεT1 + γT2 +

α

2ε
T3.

We have

T1 = (∇Sn,∇Ih(ϕ)) + (∇Sn,∇ (ϕ− Ih(ϕ))) + (∇ (s− Sn) ,∇ϕ)
=: Tn

11 + Tn
12 + Tn

13,

with Tn
12, T

n
13 → 0 by the strong H1 convergence of Ih(·) and the weak H1 convergence of Sn, respectively,

like in Step 2.
Also,

T2 =
(
|∇Un|2 Sn, Ih(ϕ)

)
+
(
|∇Un|2 Sn, ϕ− Ih(ϕ)

)
+
((
|∇u|2 − |∇Un|2

)
Sn, ϕ

)
+
(
|∇u|2 (s− Sn) , ϕ

)
=: Tn

21 + Tn
22 + Tn

23 + Tn
24,

with Tn
22, T

n
23, T

n
24 → 0 by the properties of the Lagrange interpolation, Step 3, and Lemma 5.6, respec-

tively.
Finally

T3 = (Sn − 1, Ih(ϕ))h + (Sn − 1, Ih(ϕ))− (Sn − 1, Ih(ϕ))h

+ (Sn − 1, ϕ− Ih(ϕ)) + (s− Sn, ϕ)
=: Tn

31 + . . .+ Tn
35,

with |Tn
32 + Tn

33| ≤ Ch ‖∇Sn‖L2(Ω) ‖Ih(ϕ)‖L2(Ω) → 0, and Tn
34, T

n
35 → 0 by the strong Lp convergence of

Ih(·) and Sn, respectively.
14



So, putting all of the above together, we have for n ∈ N and h > 0 fixed,

2αε (∇s,∇ϕ) + γ
(
|∇u|2s, ϕ

)
+
α

2ε
(s− 1, ϕ) =: 2αεTn

13 + γTn
21 +

α

2ε
Tn

31 + Tn,

where 2αεTn
13 + γTn

21 + α
2εT

n
31 = 0 by construction. Now, letting n→ +∞ and h→ 0, we get Tn → 0, as

shown above.
By a density argument, s solves equation (5.3) for ϕ ∈ H1(Ω)∩L∞(Ω). And since replacing s pointwise

by 0 ∨ s ∧ 1 would only decrease every term of this energy, 0 ≤ s ≤ 1 follows.
¤

Remark 5.7. For d ≤ 2, one can also get ∇Sn → ∇s strongly in L2(Ω; Rm), with an argument similar
to Step 3, using the equations for Sn and s and a test function Rh(s) − Sn. It breaks down for d ≥ 3
because of the lack of L∞-stability of the Ritz projection.

6. Computational Studies

To implement Algorithm 5.2, we use a simple fixed-point strategy (with 3 iterations) for the Ginzburg-
Landau term.

To process real images, we suggest to amend Ambrosio and Tortorelli’s energy to ATε(u, v, s) :
H1
(
Ω,Sm−1

)
×H1(Ω)×H1(Ω) → [0,+∞]

(6.1)

ATε(u, v, s) :=
γ

2

∫
Ω

(
s2 + kε

)
|∇u|2dx +

λ

2

∫
Ω

|u− g|2dx

+
γ1

2

∫
Ω

(
s2 + kε

)
|∇v|2dx +

λ1

2

∫
Ω

|v − b|2dx

+α
∫

Ω

ε|∇s|2 +
1
4ε

(1− s)2dx,

with γ, γ1, α, λ, λ1 positive constants and b, v ∈ L∞(Ω)∩H1(Ω) the brightness component of the original
and the processed image, respectively (normalised to lie in [0, 1]). So, we add a smoothing and a fidelity
term for the brightness component in the second line of (6.1). The idea here is that the smoothing term
for the chromaticity component forces |s| to be small whenever |∇u| is large, while the smoothing term
for the brightness component does the same whenever |∇v| is large. So we expect {s ≈ 0} to approximate
the union of the essential jump sets of the chromaticity and the brightness component.

This necessitates the adaptation of the optimisation problem for s as well as the solution of a third
optimisation problem, which we place between the two existing ones.

If we process an image with more noise in the chromaticity as in the brightness, as is usually the
case with images from digital cameras, we can now choose to give more weight to the information of the
brightness component, and the chromaticity component will profit from the better information of the
brightness component through the joint edge set, as illustrated in Example 5.

6.1. Academic Images, Splitting & Projection. All arrows below are scaled in length to fit the
plots. What we call h below is the length of the two shorter sides of the rectangular triangles in our
triangulations; i.e., it is shorter than the actual diameter of the triangles (by a factor of

√
2).

Example 1. Let Ω := (0, 1)2 and G as in the left plot in Figure 2. The right picture shows a section
along x = 0.5, where the z-values of the two regions are the closest. We use a triangulation consisting of
22∗8 halved squares (along the direction (1, 1)); i.e., 131072 triangles, with 66049 nodes, and h = 2−8 ≈
4 ∗ 10−3. The initial values for U and S are U0 ≡ G and S0 ≡ 0.5, respectively. We choose γ = 1.2,
α = 0.5, λ = 2 ∗ 103, ε = 6 ∗ 10−4, and kε = 10−6 (parameters chosen by experiment).

Figure 2 shows the initial values, Figure 3 the result after 10 iterations of our proposed algorithm.
Figure 4 shows the detected edge set and Figure 5 the Ambrosio-Tortorelli energy over time.

The next example numerically studies blowup behaviour for the W 1,∞-norm of iterates {Un, Sn} in
the absence of a fidelity term; i.e., λ = 0. This is motivated by blowup results for harmonic maps (to
the sphere), see e.g. [46, 47, 48, 49, 37, 6]. In particular, it is known that for d = 2, singularities only
appear for large initial energy. And any harmonic map (for general d) is smooth outside a set whose
(d− 2)-dimensional Hausdorff measure is zero, see [45, 46, 38, 29, 9, 41, 40].

Example 2. Let Ω be as above. We first use a triangulation consisting of 22∗r, r = 8 halved squares as
above, and later use coarser ones (r ∈ {5, . . . , 8}) for comparison. Let γ = 1 = α, λ = 0, ε = h/6, and
kε = 10−6. We use two sets of initial data for U and S, which are shown in Figures 6 and 9 (leftmost
column). In both cases, U0 is constantly (0, 0, 1) in the periphery of the image, (0, 0,−1) at the centre,
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Figure 2. Example 1: Original image (left) and z-values of a vertical section through
it (x = 0.5, right).
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Figure 3. Example 1: Image and section after 10 iterations.
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Figure 4. Example 1: Edge set (left) and horizontal section through it (y = 0.375,
right) after 10 iterations.

and varying continuously inside a circle around the centre. In the first case, we choose S = 0 at the
centre, S = 1 in the periphery, and smoothly varying in between; in the second case, we choose S = 1 at
the centre, S = 0 in the periphery, and smoothly varying in between.

Figure 6 shows iterates n ∈ {0, 3, 5} for r = 8 (crops in the case of Un), Figure 7 shows the total
energy for r ∈ {5, . . . , 8}, while Figure 8 shows the W 1,∞-norms of Un and Sn for r ∈ {5, . . . , 8}, which
both show blowup behaviour. This time it is Un which appears one step ahead of Sn with respect to
blowup behaviour. Depending somewhat on r, the system matrices become close to singular after 6–7
iterations, so after this point, the results can no longer be expected to be reliable. The arrow at the
centre of U at this point still points down, while the rest of U points up. The variable S, on the other
hand, becomes 1 everywhere, except for the centre, where it stays 0. After breakdown, the arrows move
erratically, but perfectly synchronised with one another.
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Figure 5. Example 1: Ambrosio-Tortorelli Energy (10 iterations, logarithmic plot).
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Figure 6. Example 2: Detail of Un (top) and full image of Sn (bottom) for n ∈ {0, 3, 5}.
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Figure 7. Example 2: Ambrosio-Tortorelli energy, 10 steps, for r = 8 (left) and r ∈
{5, . . . , 8} (right), y-logarithmic plots.

The next example uses the same setting and the same initial data for U, but avoids blowup behaviour
through a different choice of initial data for S.

Example 3. Except for the initial data for S we use exactly the same setting as in Example 2. This
time, we choose S = 1 at the centre, S = 0 in the periphery, and smoothly varying in between.

Figure 9 shows iterates n ∈ {0, 3, 6} for r = 8 (crops in the case of Un), Figure 10 shows the total
energy for r ∈ {5, . . . , 8}, while Figure 11 shows the W 1,∞-norms of Un and Sn for r ∈ {5, . . . , 8},
which this time stay finite. The arrows of U all point down at the end, while S is 1 everywhere. After
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Figure 8. Example 2: W 1,∞-norm of U and S for r ∈ {5, . . . , 8}.
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Figure 9. Example 3: Detail of Un (top) and Sn (bottom) for n ∈ {0, 3, 6}.
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Figure 10. Example 3: Ambrosio-Tortorelli energy, 10 steps, for r = 8 (left) and
r ∈ {5, . . . , 8} (right), y-logarithmic plots.

6 iterations, the system matrices again become close to singular; in this case, however, iterates do not
change dramatically after this point, if at all.

6.2. Academic Images, Penalisation & Splitting. The next example studies the same setting as
Example 1, this time with Algorithm 5.2; i.e., the sphere constraint is enforced by penalisation instead
of projection. Again, all arrows are scaled in length to fit the plots.

Example 4. The setting is as in Example 1. Parameters are γ = 1.2, α = 0.5, λ = 2 ∗ 103, ε = 10−3,
kε = 10−6, and δε = 0.1 (chosen by experiment).
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Figure 11. Example 3: W 1,∞-norm of U and S for r ∈ {5, . . . , 8}.
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Figure 12. Example 4: Edge set (left) and horizontal section through it (y = 0.375,
right) after 10 iterations.
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Figure 13. Example 4: min and max of |U| (left), and Ambrosio-Tortorelli Energy
(right) for 10 iterations.

The result U after 10 iterations looks just like in Example 1 (Figure 3), so we omit the corresponding
figures. The detected edge set after 10 iterations, however, is less exact, as shown in Figure 12. Figure 13
shows the global minimum and maximum of |U| and the Ambrosio-Tortorelli energy over time.

For δε between about 5 ∗ 10−3 and at least 102, the results are qualitatively very similar to the ones
in Example 1, but the detected edge set is less exact, and |U| can be quite a bit shorter than 1. For δε
smaller than 5 ∗ 10−3 (which would be advantageous for the accuracy of |U|), the results break down,
which is in accordance with our theoretical results.

6.3. Real Image, Splitting & Projection.
19



Example 5. We try our algorithm on a small photograph (399 × 299 pixels), as shown in Figure 14.
We choose Ω := (0, 399/299) × (0, 1), whence h = 1/298 ≈ 3 ∗ 10−3, the pixels are used as nodes, each
square of 4 pixels giving rise to two triangles. We further choose S0 ≡ 1 and add two different kinds of
noise to the image:

(1) RGB noise: R = R0 + 0.3 ∗ randn, and G and B analogously, where randn are pseudo-random
values drawn from the standard normal distribution. After this operation, we crop R, G, and B
to lie in [0, 1] (where R0, G0, B0 were scaled to lie). This is shown in Figure 14.

(2) CB noise, mainly in the chromaticity component: C = C0 + 0.5 ∗ randn ∗C0× [1, 1, 1] ∈ S2, and
B = B0 + 0.01 ∗ randn. After this operation, C is projected onto the sphere, and B is cropped to
lie in [0, 1]. This is shown in Figure 18.

Our CB algorithm was in both cases compared to a channelwise RGB computation for the same image,
with all channels sharing the same edge set. Parameters were chosen as follows (by experiment):

(1) RGB computation: α = 0.3, β = 10−2, γ = 103, ε = 10−4, and kε = 10−7.
CB computation: α = α1 = 0.5, β = 8 ∗ 10−3, γ = γ1 = 103, ε = 10−4, and kε = 10−7.

(2) RGB computation: α = 0.5, β = 5 ∗ 10−3, γ = 50, ε = 10−4, and kε = 10−7.
CB computation: α = α1 = 0.3, β = 5 ∗ 10−2, γ = 102, γ1 = 5 ∗ 105, ε = 10−4, and kε = 10−7.

Figure 14. Example 5.1: Original image (left) and image with RGB noise (right).

Figure 15. Example 5.1: Image after 10 iterations, RGB (left) and CB (right).

First, let us look at the computations with RGB noise: Figure 14 shows the noisy initial image,
and Figure 15 the results after 10 iterations. Figure 16 shows the detected edge sets, and Figure 17
the expanded Ambrosio-Tortorelli energy over time. The energy terms labelled “. . . C” belong to the
chromaticity component, those labelled “. . . B” to the brightness. The channelwise RGB algorithm has
the advantage here.

Next, let us look at the image with CB noise: Figure 18 shows the noisy initial image, and Figure 19
the results after 10 iterations. Figure 20 shows the detected edge sets, and Figure 21 the expanded
Ambrosio-Tortorelli energy over time. The CB algorithm has a very clear advantage here.
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Figure 16. Example 5.1: Edge set, RGB (left) and CB (right).
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Figure 17. Example 5.1: Expanded Ambrosio-Tortorelli Energy (10 iterations, y-
logarithmic plots), RGB (left) and CB (right).

Figure 18. Example 5.2: Original image and image with CB noise (top), as well as
noisy chromaticity (bottom left) and brightness (bottom right) components.
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Figure 19. Example 5.2: Image after 10 iterations, RGB (left) and CB (right).

Figure 20. Example 5.2: Edge set, RGB (left) and CB (right).
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Figure 21. Example 5.2: Expanded Ambrosio-Tortorelli Energy (10 iterations, y-
logarithmic plots), RGB (left) and CB (right).
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