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Abstract. In this paper, a higher order time-discretization scheme is proposed, where the
iterates approximate the solution of the stochastic semilinear wave equation driven by mul-
tiplicative noise with general drift and diffusion. We employ variational method for its error
analysis and prove an improved convergence order of 3

2
for the approximates of the solution.

The core of the analysis is Hölder continuity in time and moment bounds for the solutions
of the continuous and the discrete problem. Computational experiments are also presented.
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1. Introduction

Let O ⊂ Rd, for 1 ≤ d ≤ 3 be a bounded domain. We consider the numerical approximation
of the following stochastic semilinear wave equation perturbed by multiplicative noise of Itô
type: 

∂2t u+Au = F (u, ∂tu) + σ(u, ∂tu) ∂tW in (0, T )×O ,
u(0, ·) = u0 , ∂tu(0, ·) = v0 in O ,
u(t, ·) = 0 on ∂O, ∀ t ∈ (0, T ) ,

(1.1)

where A is a strongly elliptic second order differential operator of the form

(1.2) Aϕ(x) = −
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
ϕ(x)

)
∀x ∈ O ,

with suitably smooth coefficients aij(x), where aij = aji ∀i, j, and for every non-zero ξ ∈ Rd,∑d
i,j aij(x)ξiξj ≥ γ|ξ|2, for some constant γ > 0. Here, F and σ are Lipschitz in both

arguments. Let P := (Ω,F ,F,P) be a filtered probability space, and {W (t)}t≥0 be a finite
dimensional Wiener process defined on it; the initial data u0 and v0 are given F0−measurable
random variables.
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A strong variational solution to (1.1) exists, see e.g. [3, Sec. 6.8], and is usually constructed
via the reformulation of (1.1)1 as a first order system by setting v = ∂tu,{

du = v dt

dv =
(
−Au+ F (u, v)

)
dt+ σ(u, v) dW (t) ,

(1.3)

and then using a Faedo-Galerkin method, related uniform energy bounds, and a compactness
argument; see Definition 3.1, and Appendix A below. A prototype example is A = −∆, for
which we associate the following energy functional

(1.4) E(u, v) := Ekin(v) + Eela(u) =
1

2

∫
O
|v(x)|2dx+

1

2

∫
O
|∇u(x)|2dx ,

where the first term represents the kinetic energy, and the second the elastic energy of the
propagating wave with pointwise elongation u : [0, T ]×O×Ω→ R. — We begin the further
discussion with an example to motivate the effect of noise.

Example 1. Let O = (0, 1), T = 1, A = −∆, F ≡ 0 in (1.1), and W be of the form (2.2),
with M = 3, and ej(x) =

√
2 sin(jπx). — The first line in Fig. 1.1 displays single trajectories

of u for different σ ≡ σ(u, v). For σ ≡ 0 both, the amplitude and wavelength remain constant
over time in snapshot (A), as does E(u, v) in (D). For σ(u, v) = 1

2u, the amplitude of a single
wave realization in snapshot (B) changes — as do the trajectory-wise energy parts in (E) —,
while the wavelength remains constant over time. The computation of the (approximate) total
energy uses MC = 103 Monte-Carlo simulations in snapshot (G): it is conserved, and close to
(D).

For σ(u, v) = 1
2v both, the wavelength and frequency of a single trajectory are heavily

affected, see snapshot (C), and (F), where only t 7→ Eela(u(t, ω)) is smooth. In contrast, the
dynamics of EMC[E(u, v)] in (H) recovers the exchange of elastic and kinetic energy parts, but
the total energy is not conserved any more. The proper resolution of snapshot (H) required 5
times more Monte-Carlo simulations than for (G).

The first works to numerically solve (1.1) are [13] and [12], where (semi-)discrete schemes
were constructed based on the solution concept of a mild solution for (1.1): in [13], which
considered O = R, A = −∆, Lipschitz nonlinearities F ≡ F (u) and σ ≡ σ(u), and white

noise, a strong convergence rate O(k1/2) was shown for an explicit finite difference scheme,
where the temporal step size k is equal to the mesh size h of the Cartesian spatial mesh; the
error analysis uses the Green’s function, which is explicitly known in this case, and hence
used the mild solution concept for this Cauchy problem.

A further development in this direction is [4], where O = (0, 1), A = −∆ in (1.1), and the
authors used the explicit representation of (discrete) Green’s function, such that its implemen-
tation crucially hinges on the availability of eigenvalues and eigenfunctions of the Laplacian;
see also [3, Sec. 5.3], and [10]. The stable scheme then allows independent choices of k and
h, and the proof of [4, Thm. 4.1] provides convergence rates both, in terms of spatial and
temporal discretization. We also mention [5], where O is a bounded convex domain with
polygonal boundary, and A = −∆ in (1.1); the space-time discretization was proposed with
the explicit knowledge of the related (discrete) semigroup, whose efficient implementation
again hinges on the knowledge of the related eigenvalues and eigenfunctions. Later, in [1] the
authors addressed the multiplicative noise case with σ ≡ σ(u), where σ and also the nonlin-
earity F ≡ F (u) were assumed to be zero on the boundary. The above mentioned works did
not address the case when F ≡ F (u, v) and σ ≡ σ(u, v).
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with MC = 5× 103

Figure 1.1. (Example 1) (1st line) Single trajectory of u from (1.1), simu-
lated via (α̂, β)−scheme (α̂ = 1). (2nd line) Corresponding elastic (Eela), ki-
netic (Ekin), total energy (E), for mesh sizes h = 2−7 and k = 2−10. (3rd line)
Plots t 7→ EMC[E(u(t), v(t))], with MC = 103 in snapshot (G) and MC = 5 × 103

in (H).

In engineering applications for elastic and acoustic wave propagations which may be de-
scribed by (1.1), the considered domains O ⊂ Rd are typically complicated, and/or the
propagating medium is heterogeneous, with layers, anisotropies, cavities (e.g. in seismology,
or material testing), or may even be random. Moreover, models of type (1.1) often require
non-constant and non-self-adjoint operators, such as those in (1.2), which may even have
random coefficients. Therefore, such engineering problems often exclude the efficient use of
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semigroup based methods through spectral theory as discussed above. This motivates us to
aim for the following goals in this work:

1) Use an implicit method in time (below referred to as (α̂, β)−method, where α̂ = 0;
see Scheme 2) to approximate (1.1) with F ≡ F (u, ∂tu) and σ ≡ σ(u, ∂tu), and
employ variational methods for its error analysis. This part is motivated by [7] for the
deterministic linear wave equation, i.e., F ≡ σ ≡ 0. For finite dimensional noise of
type (2.2), we use energy arguments to obtain O(k) for the temporal error — which
coincides with the order obtained in [1, Thm. 4] and [4, Thm. 4.1] for an exponential
integrator, in the case σ ≡ σ(u), F ≡ F (u) and trace-class noise in (1.1). We obtain

O(k
1
2 ) for the temporal error in the general case σ ≡ σ(u, v) and F ≡ F (u, v), which

has not been addressed in the existing literature.
2) For σ ≡ σ(u) and F ≡ F (u), in fact, we improve the (α̂, β)−method to a higher-order

method which yields improved convergence order O(k3/2) for approximates of u in
L2; see Theorem 5.1. The additional term that arises for α̂ = 1 is motivated by Ito’s
formula, and uses increments

(1.5) ∆̃nW :=

∫ tn+1

tn

(s− tn) dW (s) =

∫ tn+1

tn

s dW (s)− tn∆nW .

3) Computational experiments in Section 6 show that these results are sharp w.r.t. the
used noise, i.e., there are examples for σ ≡ σ(u, v) where the error converges only in

order O(k) — rather than O(k3/2) in the case σ ≡ σ(u).

In this work, we focus on proper time discretizations for (1.1), which we consider to be the
essential part of an overall discretization, and leave a related finite element error analysis for
future work. The results will be derived for (1.1) with A = −∆ to simplify the technical
setup, but easily generalize to A in (1.2), even with random coefficients there. Moreover, the
(α̂, β)−method is neither a spectral Galerkin method nor does its implementation hinge on
related semigroups.

While being inspired by the second order time-stepping scheme of [7] for the deterministic

wave equation, where un,
1
2 := 1

2(un+1 + un−1), we propose the following scheme for (1.1):

Scheme 1. ((α̃, β)−scheme) Fix α̃ ∈ {0, 1} and β ∈ [0, 1/2). Let {tn}Nn=0 be a mesh of size
k > 0 covering [0, T ], and {(un, vn)n=0,1} be given Ftn-measurable, [H1

0]
2-valued r.v’s. For

every n ≥ 1, find [H1
0]
2-valued, Ftn+1-measurable r.v’s (un+1, vn+1) such that P-a.s.

(un+1 − un, φ) = k(vn+1, φ) ∀φ ∈ L2 ,(1.6)

(vn+1 − vn, ψ) = −k
(
∇ũn,

1
2 ,∇ψ

)
+
(
σ(un, vn−

1
2 ) ∆nW,ψ

)
+α̃

(
Duσ(un, vn−

1
2 ) vn ∆̃nW,ψ

)
(1.7)

+
k

2

(
3F (un, vn)− F (un−1, vn−1), ψ

)
∀ψ ∈ H1

0 ,

where

ũn,
1
2 ≡ ũn,

1
2

β :=
1 + β kβ

2
un+1 +

1− β kβ

2
un−1 ,(1.8)
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and

∆nW := W (tn+1)−W (tn) and vn−
1
2 :=

1

2
(vn + vn−1) .

Note that ũn,
1
2 = un,

1
2 for β = 0. Also, in the case when F ≡ F (u), σ ≡ σ(u) and β = 0,

the (α̃, β)−scheme simplifies to

(un+1 − un, φ) = k(vn+1, φ) ∀φ ∈ L2 ,(1.9)

(vn+1 − vn, ψ) = −k
(
∇un,

1
2 ,∇ψ

)
+
(
σ(un)∆nW,ψ

)
+ α̃

(
Duσ(un)vn∆̃nW,ψ

)
(1.10)

+
k

2

(
3F (un)− F (un−1), ψ

)
∀ψ ∈ H1

0 .

Scheme 1 involves the increment ∆̃nW from (1.5). For their implementation, we approxi-

mate it by ∆̂nW defined as

∆̂nW := kW (tn+1)− k2
k−1∑
`=1

W (tn,`) ,(1.11)

where
{
W (tn,`)

}k−1

`=1
is the piecewise affine approximation of W on [tn, tn+1] on an equidistant

mesh {tn,`}k
−1

`=1, of size k2 := tn,`+1 − tn,`. To motivate this approximation, we first use Itô’s

formula to restate ∆̃nW as

∆̃nW =
(
tn+1W (tn+1)− tnW (tn)

)
−
∫ tn+1

tn

W (s) ds− tn∆nW

=

∫ tn+1

tn

[
W (tn+1)−W (s)

]
ds = kW (tn+1)−

∫ tn+1

tn

W (s) ds

(1.12)

and we approximate the last integral in the right-hand side of (1.12) by k2
∑k−1

`=1W (tn,`).
Thus, we have the following implementable scheme:

Scheme 2. ((α̂, β)−scheme) Consider Scheme 1. We refer to (1.6)–(1.7) as (α̂, β)−scheme,

when α̃ and ∆̃nW are replaced by α̂ and ∆̂nW , respectively.

The following example motivates that the convergence rate for the (1, 0)−scheme is boosted

from O(k) to O(k3/2), in case σ ≡ σ(u) and F ≡ F (u).

Example 2. Let O = (0, 1), T = 1, A = −∆, F ≡ 0, σ(u) = 2 sin(u) in (1.3). Let

u0(x) = sin(2πx) and v0(x) = sin(3πx) ,

and W as in Example 1. Fig. 1.2 displays convergence studies for the scheme (1.9)–(1.10): for
α̂ = 0, the plots (A) – (C) show L2-errors in u, ∇u, evidencing convergence order O(k), and

those for v evidence convergence order O(k1/2). For α̂ = 1, the convergence order improves

to O(k3/2) for u, ∇u, and O(k) for v; see plots (D) – (F). See Section 6 for more details.

The rest of the paper is organized as follows. In Section 2, we precise the data requirements
in (1.3) with A = −∆ and provide the structure assumptions on F and σ. In Section 3,
we recall the concept of a strong variational solution for the problem (1.3) and discuss its
regularity. In Section 4, we prove stability results for the (α̂, β)−scheme. In Section 5, we
prove strong rates of convergence for the above mentioned schemes. In Section 6, we present
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Figure 1.2. (Example 2) Temporal rates of convergence for the scheme
(1.9)–(1.10) with F ≡ 0 and σ(u) = 2 sin(u); α̂ = 0 in (A), (B), (C), and
α̂ = 1 in (D), (E), (F); discretization parameters: h = 2−7, k = {2−3, · · · , 2−6},
MC = 3000.

comparative computational studies which evidence the role of noise in various cases and
validates the proved error estimate results.

2. Preliminaries and Assumptions

2.1. Notation and useful results. Let (Lp(O), ‖ · ‖Lp) and (Wm,p(O), ‖ · ‖Wm,p) be the
Lebesgue and Sobolev spaces respectively, endowed with usual norms for m ∈ N and 1 ≤ p ≤
∞. We denote Lp := Lp(O) and Wm,p := Wm,p(O). For p = 2, let (·, ·) be the inner-product
in L2, and Hm := Wm,2. We define H1

0 := {u ∈ H1 : u|∂O = 0}.
Let X,Y be two separable Hilbert spaces. Let L(X,Y) denote the space of all linear maps

from X to Y, and Lm(X,Y) denotes the space of all multi-linear maps from X × · · · × X
(m-times) to Y for m ≥ 2. Throughout this paper, for some Φ : H1

0 × H1
0 → L2, we use the

notation DuΦ(u, v) ∈ L(H1
0,L2) for the Gateaux derivative w.r.t u, whose action is seen as

h 7→ DuΦ(u, v)(h), for h ∈ H1
0 .

We denote the second derivative w.r.t. u by D2
uΦ(u, v) ∈ L2(H1

0,L2), whose action can be
seen as

(h, k) 7→ D2
uΦ(u, v)(h, k) := (D2

uΦ(u, v)h)(k) for (h, k) ∈ [H1
0]
2 .
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Similarly, we define DvΦ(u, v), D2
vΦ(u, v).

2.1.1. A quadrature formula. The following quadrature formula will be crucially used in our
error analysis (see [6, Thm. 2]).

Lemma 2.1. Let f ∈ C1,γ([0, T ];R), for some γ ∈ (0, 1]. Then there holds∣∣∣f(0) + f(T )

2
− 1

T

∫ T

0
f(ξ) dξ

∣∣∣ ≤ C̃

(γ + 2)(γ + 3)
T 1+γ ,

where C̃ > 0 satisfies

(2.1)
∣∣f ′(t)− f ′(s)∣∣ ≤ C̃|t− s|γ ∀ s, t ∈ [0, T ] .

2.2. Assumptions. In this section, we list all the assumptions and hypotheses that are
imposed throughout this paper.

2.2.1. Domain and initial data. We make the following assumptions.

(A1) Let O ⊂ Rd, for 1 ≤ d ≤ 3, be a bounded domain

(i) with ∂O of class C1, and (u0, v0) ∈ H1
0 × L2 ,

(ii) with ∂O of class C2, and (u0, v0) ∈ (H1
0 ∩H2)×H1

0 ,
(iii) with ∂O of class C3, and (u0, v0) ∈ (H1

0 ∩H3)× (H1
0 ∩H2) .

(iv) with ∂O of class C4, and (u0, v0) ∈ (H1
0 ∩H4)× (H1

0 ∩H3) .

2.2.2. Probability set-up. For simplicity, let W be a finite-dimensional Wiener process.

(A2) Let P :=
(
Ω,F , {Ft}t≥0,P

)
be a stochastic basis with a complete filtration {Ft}t≥0 ⊆ F .

For some M ∈ N, let W be a K-valued Wiener process on P of the form

W (t, x, ω) :=

M∑
j=1

βj(t, ω)ej(x) ,(2.2)

where K ⊆ H1
0 ∩ H3 is a Hilbert space, and

{
βj(t, ω); t ≥ 0

}
are mutually independent

Brownian motions relative to {Ft}t≥0, and {ej}Mj=1 be an orthonormal basis of K.

2.2.3. The nonlinearity of the model. Let F : [H1
0]
2 → L2 and σ : [H1

0]
2 → H1

0.

(A3) Assume F (u, v) = F1(u)+F2(v) and σ(u, v) = σ1(u)+σ2(v), such that F2(v) and σ2(v)
are affine in v. For any u, ũ ∈ H1

0, there is a constant CL > 0 such that the Lipschitz condition
holds:

‖F1(u)− F1(ũ)‖L2 + ‖σ1(u)− σ1(ũ)‖L2 ≤ CL ‖u− ũ‖L2 .

(A4) There exists a constant Cg > 0 such that

‖Dm
u F1(·)‖L∞(H1

0;Lm(H1
0,L2)) + ‖Dm

u σ1(·)‖L∞(H1
0;Lm(H1

0,H1
0))
≤ Cg (m = 1, 2, 3) .

By the assumption (A4), we deduce that F (u, v) ∈ H1. Since F (u, v) is not assumed to be
zero on the boundary, we introduce the following notation.

(A5) Let F̂ (u, v) := F (u, v) − F (0, 0) = F1(u) + F2(v) − F (0, 0), and assume F (0, 0) ∈
L2(0, T ;Hm) for m = 1, 2, 3.
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3. Definition and properties of solution

We recall the concept of a strong variational solution for (1.3) with A = −∆ and establish
stability results in higher spatial norms, and bounds in temporal Hölder norms.

Definition 3.1. Assume (A1)i, (A2) and (A3). We call the tuple (u, v) a strong variational
solution of (1.3) with A = −∆ on the interval [0, T ] if

(i) (u, v) is an H1
0 × L2-valued, {Ft}-adapted process;

(ii) (u, v) ∈ L2
(
Ω;C([0, T ];H1

0)
)
× L2

(
Ω;C([0, T ];L2)

)
; and

(u(t), φ) =

∫ t

0

(v, φ) ds+ (u0, φ) ∀φ ∈ L2 ,(3.1)

(v(t), ψ) = −
∫ t

0

[
(∇u,∇ψ) +

(
F (u, v), ψ

)]
ds+

∫ t

0

(
ψ, σ(u, v) dW (s)

)
+ (v0, ψ) ∀ψ ∈ H1

0 ,(3.2)

holds for each t ∈ [0, T ] P-a.s..
(iii) There exists a constant C > 0, depending on T,CL and initial data such that there

holds P-a.s.

E
[

sup
0≤t≤T

E(u(t), v(t))
]
≤ C .

The existence of a unique strong variational solution was shown in [3, Sec. 6.8, Thm. 8.4].

Lemma 3.2. Let (u, v) be the strong (variational) solution to the problem (3.1)–(3.2). For
p ∈ N, there holds P-a.s.

(i) under the hypotheses (A1)i, (A2), and (A3), the {Ft}t≥0−adapted process
(u, v) ∈ L2p

(
Ω;L∞(0, T ;H1 × L2)

)
, and there exists K1 ≡ K1(p) > 0, such that

E
[

sup
0≤t≤T

(
‖u(t)‖2pH1 + ‖v(t)‖2pL2

)]
≤ K1 ;(3.3)

(ii) under the hypotheses (A1)ii, (A2), (A3), and (A4), (A5) for m = 1, the {Ft}t≥0−adapted
process (u, v) ∈ L2p

(
Ω;L∞(0, T ;H2 × H1)

)
, and there exists K2 ≡ K2(p) > 0, such

that

E
[

sup
0≤t≤T

(
‖u(t)‖2pH2 + ‖v(t)‖2pH1

)]
≤ K2 ;(3.4)

(iii) under the hypotheses (A1)iii, (A2), (A3), and (A4), (A5) for m = 1, 2, the
{Ft}t≥0− adapted process (u, v) ∈ L2p

(
Ω;L∞(0, T ;H3 ×H2)

)
, and there exists K3 ≡

K3(p) > 0, such that

E
[

sup
0≤t≤T

(
‖u(t)‖2pH3 + ‖v(t)‖2pH2

)]
≤ K3 ;(3.5)

(iv) under the hypotheses (A1)iv, (A2), (A3), and (A4), (A5) for m = 1, 2, 3, the
{Ft}t≥0− adapted process (u, v) ∈ L2p

(
Ω;L∞(0, T ;H4 ×H3)

)
, and there exists K4 ≡

K4(p) > 0, such that

E
[

sup
0≤t≤T

(
‖u(t)‖2pH4 + ‖v(t)‖2pH3

)]
≤ K4 .(3.6)

Proof. The proof is given in Appendix A. �
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3.1. Hölder continuity in time. In this subsection, we derive temporal Hölder continuity
estimates for the solution pair (u, v) of the problem (3.1)–(3.2) with respect to different norms,
which will be useful in the error analysis in later section.

Lemma 3.3. Let (u, v) be the strong (variational) solution to the problem (3.1)–(3.2). Then,
for any s, t ∈ [0, T ], we have for p ≥ 1

(i) under the hypotheses (A1)i, (A2), and (A3), there holds P-a.s.(
E
[

sup
s≤r≤t

‖u(r)− u(s)‖2pL2

])1/2p

≤ C(K1) |t− s| ;

(ii) under the hypotheses (A1)ii, (A2), (A3), and (A4), (A5) for m = 1, there holds
P-a.s.(

E
[

sup
s≤r≤t

‖u(r)− u(s)‖2pH1

])1/2p

+ E
[

sup
s≤r≤t

‖v(r)− v(s)‖2L2

]
≤ C(K2) |t− s| ;

(iii) under the hypotheses (A1)iii, (A2), (A3), and (A4), (A5) for m = 1, 2, there holds
P-a.s.(
E
[

sup
s≤r≤t

‖u(r)− u(s)‖2pH2

])1/2p

+ E
[

sup
s≤r≤t

‖v(r)− v(s)‖2H1

]
≤ C(K3) |t− s| ,

(iv) under the hypotheses (A1)iv, (A2), (A3), and (A4), (A5) for m = 1, 2, 3, there
holds P-a.s.(
E
[

sup
s≤r≤t

‖u(r)− u(s)‖2pH3

])1/2p

+ E
[

sup
s≤r≤t

‖v(r)− v(s)‖2H2

]
≤ C(K4) |t− s| ,

where the positive constants C(Ki) for i = 1, · · · , 4, depend on the constants Ki, defined in
Lemma 3.2.

Proof. The proof is given in Appendix B. �

4. Discrete Stability Analysis for the (α̂, β)−scheme

If compared to the term −∆un,
1
2 , the term −∆ũn,

1
2 in the (α̂, β)−scheme fortifies stability

properties of the method: in fact, the identity

(4.1) ũn,
1
2 = un,

1
2 + β

kβ

2

(
un+1 − un−1

)
= un,

1
2 + βk1+βvn+

1
2

creates an additional ‘numerical dissipation’ term scaled by βk2+β in (1.3), which suffices to
control general noises σ ≡ σ(u, v), in case 0 ≤ β < 1

2 (see Lemma 4.1 below); for σ ≡ σ(u)
only, the scheme (1.9)–(1.10) yields a stable scheme.

In this section, we discuss the discrete stability analysis for the (α̂, β)−scheme and we
make a remark on the stability results of the scheme (1.9)–(1.10) as this is a sub-case of the
(α̂, β)−scheme. We recall (1.4), where the energy functional is stated.

(B1) For the stability results, we need the following assumptions on the iterates (u1, v1):

(i) Along with (A1)i, assume (u1, v1) ∈ L2p
(
Ω; [H1

0]
2
)

for p ≥ 1.

(ii) Along with (A1)ii, assume (u1, v1) ∈ L2p
(
Ω; [H1

0 ∩H2]2
)

for p ≥ 1.
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Lemma 4.1. Let α̂ ∈ {0, 1}. Assume (A1)ii, (A2), (A3), (A4) for m = 1, and (B1)i.

Then, there exists an
[
H1

0

]2
-valued {(Ftn)0≤n≤N}-adapted solution {(un, vn); 0 ≤ n ≤ N} of

the (α̂, β)−scheme. Moreover, for 0 ≤ β < 1
2 , and k ≤ k0(CL, Cg) sufficiently small, there

exists a constant C1 > 0 that does not depend on k > 0 such that

(4.2) max
1≤n≤N−1

E
[
E(un+1, vn+1)

]
+ βk2+β

N−1∑
n=1

E
[
‖∇vn+

1
2 ‖2L2

]
≤ C1 .

In addition, there exists a further constant C2,p > 0 such that we have

(4.3) max
1≤n≤N−1

E
[
E2p(un+1, vn+1)

]
≤ C2,p (p ≥ 1) .

Additionally, assume σ2(v) ≡ 0 ≡ F2(v) in (A3) and β = 0. For k ≤ k0(CL, Cg) sufficiently
small, there exists a constant C3 > 0 independent of k > 0 such that

max
1≤n≤N

E
[
‖un‖2L2

]
+

1

4
E
[
k

n∑
j=1

∥∥∇uj∥∥2L2

]
≤ C3 .(4.4)

There exists further constant C4,p > 0 such that we have

max
1≤n≤N

E
[
‖un‖2pL2

]
≤ C4,p (p ≥ 1) .(4.5)

The following remark discusses specific problems to derive this stability result.

Remark 1. 1. The derivation of (discrete) stability estimates for a (temporal) discretization
for the stochastic wave equation (1.3) — like Scheme 1 — differs from corresponding tasks
for parabolic SPDEs, which is due to the conservation of energy in the deterministic case. In
this case (where σ ≡ 0), the test function vn+1/2 is ‘natural’ to deduce (4.2); it is used in [7]
as well, and exploits the (third) binomial formula, such that the first term in (1.7) becomes(

vn+1 − vn, 1

2
[vn+1 + vn]

)
=

1

2

(
‖vn+1‖2L2 − ‖vn‖2L2

)
;

see also (4.7) below. Conceptional difficulties now appear in the stochastic case where σ 6= 0
— see e.g. the term Jn1 in (4.7). A well-known strategy in a setting of parabolic SPDEs would
be to employ E

[
∆nW

]
= 0 to conclude

Jn1 = E
[(
σ(un, vn−

1
2 ) ∆nW,

1

2
[vn+1 − vn]

)]
(4.6)

≤ Cδ E
[
‖σ(un, vn−

1
2 ) ∆nW‖2L2

]
+ δ E

[
‖vn+1 − vn‖2L2

]
(δ > 0) ,

and to then absorb the last term by a corresponding one on the left-hand side — which would
arise if vn+1 instead would have been chosen as test function. We avoid the estimation in
(4.6) by using the equation (1.7) to replace vn+1 − vn in Jn1 ; see (4.10) below.

2. The last term in (4.1) is the reason to evaluate σ resp. Duσ at (un, vn−
1
2 ) in (1.7) —

instead of e.g. at (un, vn); see also the left-hand side of (4.9), and the estimation of the terms

J
n,1
1,2 , Jn,21,1 , and J

n,2
1,2 in the proof of Lemma 4.1.

3. The inequality (4.3) assembles higher moment estimates, which will be used in Section 5
to derive improved rates of convergence; see Theorem 5.1.
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4. The following two inequalities will be used frequently in the proof of discrete stability; see
parts 1a) and 1b) below. The identity (1.12) leads to

E
[
|∆̃nW |2

]
≤ k

∫ tn+1

tn

E
[
|W (tn+1)−W (s)|2

]
ds ≤ Ck3 ,

and by the identity (1.11), for q = 1, 2 we infer

E
[
|∆̂nW |2q

]
≤ Ck2q E

[
|W (tn+1)|2q

]
+ Ck2q+1

k−1∑
`=1

E
[
|W (tn,`)|2q

]
≤ Ck3q + Ck4q ≤ Ck3q .

The estimation of the distance between ∆̃nW and ∆̂nW is useful in the convergence analysis
in the next section, which is derived in (5.9).

5. If σ2(v) ≡ 0 ≡ F2(v) in (A3) and β = 0 hold, we consider the scheme (1.9)–(1.10), where
to verify discrete stability is easier; in fact, the identity (4.7) simplifies considerably since

both, F and σ do not depend on v any more; see e.g. the estimate for J
n,1
1,1 in (4.12). For

the higher moment estimates, we multiply the corresponding (4.19) of the scheme (1.9)–(1.10)
with E(un+1, vn+1) only, which is different from the general case; see step 2) below.

6. In the proof of (4.4), under the hypotheses σ2(v) ≡ 0 ≡ F2(v) in (A3), β = 0 and (A4)
for m = 1, we combine both equations of the scheme (1.9)–(1.10) to write a single equation
for u` and sum over the first n steps; see (4.23). If we would apply the same approach for

the general σ ≡ σ(u`, v`−1/2), we could use the first equation of the (α̂, β)−scheme to replace

v`−1/2 by 1
2k

(
u`−u`−2

)
. Thus, to estimate (4.27) in general case, we use the growth condition

to write

k2
n∑
`=1

E
[
‖σ(u`, (1/2k)(u` − u`−2))‖2L2

]
≤ CLk

2
n∑
`=1

E
[
1 + ‖∇u`‖2L2 +

1

4k2
(
‖u`‖2L2 + ‖u`−2‖2L2

)]
,

which, by to the last term, is not in suitable form to apply the discrete Gronwall lemma. Thus,
the approach to prove (4.4) is not useful for the general σ ≡ σ(u, v).

Proof of Lemma 4.1. The P-a.s. solvability easily follows from Lax-Milgram lemma, and (A3).
Using the L2-regularity theory for elliptic equations on regular domains (see [9, Sec. 15.5]),
the system in Scheme 1 holds strongly Leb⊗P−a.s. The proof of Lemma 4.1 is split into the
following three steps 1) – 3).

1) Proof of (4.2). We use the test function 2kvn+1/2 = un+1 − un−1 in (1.7), and identity
(4.1) to get

1

2
E
[
‖vn+1‖2L2 − ‖vn‖2L2

]
+ kE

[(
∇un,

1
2 ,∇vn+

1
2
)]

+ β k2+βE
[
‖∇vn+

1
2 ‖2L2

]
= E

[(
σ(un, vn−

1
2 ) ∆nW, v

n+ 1
2

)
+ α̂

(
Duσ(un, vn−

1
2 )vn ∆̂nW, vn+

1
2

)
+
k

2

(
3F (un, vn)− F (un−1, vn−1), vn+

1
2

)]
=:

3∑
i=1

E
[
Jni
]
.

(4.7)

Next, we use (1.6) in strong form, sum it for two subsequent steps, and multiply this equation

with −∆un,
1
2 ; we then arrive at

1

4

[
‖∇un+1‖2L2 − ‖∇un−1‖2L2

]
= k

(
∇un,

1
2 ,∇vn+

1
2

)
.(4.8)
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Since the right-hand side of (4.8) is equal to the second term on the left-hand side of (4.7)
we conclude that

1

2
E
[
‖vn+1‖2L2 − ‖vn‖2L2

]
+

1

4
E
[
‖∇un+1‖2L2 − ‖∇un−1‖2L2

]
+ β k2+βE

[
‖∇vn+

1
2 ‖2L2

]
=

3∑
i=1

E
[
Jni
]
.

(4.9)

Now we estimate each term on the right-hand side of (4.9). Using properties of the increments

∆nW , we get E
[(
σ(un, vn−

1
2 )∆nW, v

n
)]

= 0. Using this we infer

E
[
Jn1
]

= E
[(
σ(un, vn−

1
2 )∆nW, v

n+ 1
2

)]
= E

[(
σ(un, vn−

1
2 )∆nW,

vn+1 + vn

2

)]
=

1

2
E
[(
σ(un, vn−

1
2 )∆nW, v

n+1 − vn
)]
.

We use (1.7) — in modified form as stated in Scheme 2 — to replace vn+1 − vn. Hence

E
[
Jn1
]

=
1

2
E
[(
σ(un, vn−

1
2 )∆nW,k∆un,

1
2

)]
+

1

2
E
[(
σ(un, vn−

1
2 )∆nW,βk

2+β∆vn+
1
2

)]
+

1

2
E
[
‖σ(un, vn−

1
2 )‖2L2 |∆nW |2

]
+
α̂

2
E
[(
σ(un, vn−

1
2 )∆nW,Duσ(un, vn−

1
2 )vn ∆̂nW

)]
+
k

4
E
[(
σ(un, vn−

1
2 )∆nW,

[
3F (un, vn)− F (un−1, vn−1)

])]
=:

5∑
i=1

J
n,i
1 .

(4.10)

In the following parts a)–c), we independently bound E
[
Jn1
]

through E
[
Jn3
]

in (4.7).

a) Estimation of E
[
Jn1
]

in (4.10). We estimate the five terms Jn,i1 , i = 1, · · · , 5, on the right-

hand side of (4.10). Let Duσ ≡ Duσ(un, vn−
1
2 ) ∈ L(H1

0,H1
0) and Dvσ ≡ Dvσ(un, vn−

1
2 ) ∈

L(H1
0,H1

0). By integration by parts and using σ(un, vn−
1
2 ) = 0 on ∂O we infer

J
n,1
1 =

1

2
E
[
−
(
Duσ∇un∆nW,k∇un,

1
2

)]
+

1

2
E
[
−
(
Dvσ∇vn−

1
2 ∆nW,k∇un,

1
2

)]
= J

n,1
1,1 + J

n,1
1,2 .

(4.11)

Using (A4) for m = 1 and the Itô isometry we get

J
n,1
1,1 ≤ C

2
g E
[
‖∇un‖2L2 |∆nW |2

]
+ Ck2 E

[
‖∇un,

1
2 ‖2L2

]
≤ C2

g kE
[
‖∇un‖2L2

]
+ Ck2 E

[
‖∇un+1‖2L2 + ‖∇un−1‖2L2

]
.

(4.12)

Using (A4) for m = 1, the independence property of the increment ∆nW , the Itô isometry

and the identity 2kvn+1/2 = un+1 − un−1, we estimate

J
n,1
1,2 =

1

2
E
[
−
(
Dvσ∇vn−

1
2 ∆nW,

k

2
∇
[
un+1 − un−1

])]
=

1

2
E
[
−
(
k1−

β
2Dvσ∇vn−

1
2 ∆nW,k

1+β
2 ∇vn+

1
2

)]
≤ 3

8
C2
g k

1+(2−β) E
[
‖∇vn−

1
2 ‖2L2

]
+

1

6
k2+β E

[
‖∇vn+

1
2 ‖2L2

]
.

(4.13)
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The terms on the right-hand sides of (4.12) and (4.13) may now be controlled by those on the

left-hand side of (4.9) after summation over 1 ≤ n ≤ N − 1, provided that k ≤
(

4
3C2

gβ

) 1
1−2β

for β < 1
2 is sufficiently small.

Now we turn to J
n,2
1 in (4.10): integration by parts and using the fact that σ(un, vn−

1
2 ) = 0

on ∂O we get

J
n,2
1 =

1

2
E
[
−
(
k1+

β
2Duσ∇un ∆nW,β k

1+β
2 ∇vn+

1
2

)]
+

1

2
E
[
−
(
k1+

β
2Dvσ∇vn−

1
2 ∆nW,β k

1+β
2 ∇vn+

1
2

)]
=: Jn,21,1 + J

n,2
1,2 .

(4.14)

Using (A4) for m = 1 and the independence property of ∆nW we estimate

J
n,2
1,1 ≤ C k

3+β E
[
‖∇un‖2L2

]
+ β

1

6
k2+β E

[
‖∇vn+

1
2 ‖2L2

]
,

where the second term in the right-hand side can be be controlled by the corresponding term
on the left-hand side of (4.9). Again, using (A4) for m = 1 we obtain for the second term in
(4.14)

J
n,2
1,2 ≤ β

3

8
C2
g k k

2+β E
[
‖∇vn−

1
2 ‖2L2

]
+ β

1

6
k2+β E

[
‖∇vn+

1
2 ‖2L2

]
,

where the right-hand side can be managed with the left-hand side of (4.9).

We continue with the next term J
n,3
1 in (4.10): by Itô isometry and (A3),

J
n,3
1 =

1

2
E
[
‖σ(un, vn−

1
2 )‖2L2 |∆nW |2

]
≤ CkE

[
1 + ‖∇un‖2L2 + ‖vn‖2L2 + ‖vn−1‖2L2

]
,

where C > 0 depends on CL. Next comes J
n,4
1 : using (A3), (A4) for m = 1 and item 4. of

Remark 1, we infer

J
n,4
1 ≤ CE

[
‖σ(un, vn−

1
2 )‖2L2 |∆nW |2

]
+
α̂2

4
C2
g E
[
‖vn‖2L2

∣∣∆̂nW
∣∣2]

≤ CkE
[
1 + ‖∇un‖2L2 + ‖vn‖2L2 + ‖vn−1‖2L2

]
+
α̂2

4
C2
g k

3 E
[
‖vn‖2L2

]
,

(4.15)

where C > 0 depends on CL. The last term is J
n,5
1 : by (A3) we obtain

J
n,5
1 ≤ CE

[
‖σ(un, vn−

1
2 )‖2L2 |∆nW |2

]
+ Ck2 E

[
‖F (un, vn)‖2L2 + ‖F (un−1, vn−1)‖2L2

]
≤ CkE

[
1 + ‖∇un‖2L2 + ‖∇un−1‖2L2 + ‖vn‖2L2 + ‖vn−1‖2L2

]
,

(4.16)

where the constant C > 0 depends on CL. Thus, the estimate of Jn1 through those of J
n,1
1

through J
n,5
1 is complete.

b) Estimation of E
[
Jn2
]

in (4.7). By (A4) for m = 1, item 4. of Remark 1, and the

independence property of ∆̂nW ,

Jn2 ≤ α̂2 1

k
E
[
‖Duσ(un, vn−

1
2 )vn‖2L2

∣∣∆̂nW
∣∣2]+ CkE

[
‖vn+

1
2 ‖2L2

]
≤ C2

g α̂
2 k2 E

[
‖vn‖2L2

]
+ CkE

[
‖vn+1‖2L2 + ‖vn‖2L2

]
.
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c) Estimation of E
[
Jn3
]

in (4.7). By (A3) we estimate

Jn3 = kE
[(
F (un, vn), vn+

1
2

)]
+
k

2
E
[(
F (un, vn)− F (un−1, vn−1), vn+

1
2

)]
≤ CkE

[
‖vn+

1
2 ‖2L2

]
+ C kE

[
1 + ‖∇un‖2L2 + ‖∇un−1‖2L2 + ‖vn‖2L2 + ‖vn−1‖2L2

]
.

(4.17)

Now, we may use the parts a) through c) to bound the terms on the right-hand side of (4.9).
Summation over all 1 ≤ n ≤ N − 1, for k ≤ k0 ≡ k0(CL, Cg) sufficiently small, leads to

1

4
E
[
E(uN , vN )

]
+ β

1

4
k2+β E

[
‖∇vn+

1
2 ‖2L2

]
≤ 1

4
E
[
E(u0, v

1)
]

+ β
k2+β

4
E
[
‖∇v1/2‖2L2

]
+

1

4
E
[
‖∇u1‖2L2

]
+ Ck

N−1∑
n=1

E
[
E(un, vn)

]
.

(4.18)

By (B1)i, the implicit version of the discrete Gronwall lemma then shows (4.2).

2) Proof of (4.3) for p = 1. To simplify technicalities, we put F ≡ 0. Let us denote
E(un+1, vn+1) := 1

4

[
‖∇un+1‖2L2 + 2‖vn+1‖2L2

]
. Arguing as before (4.9) then leads to[

E(un+1, vn+1)− E(un−1, vn)
]

+ βk2+β‖∇vn+
1
2 ‖2L2(4.19)

=
(
σ(un, vn−

1
2 )∆nW, v

n+ 1
2

)
+ α̂

(
Duσ(un, vn−

1
2 )vn ∆̂nW, vn+

1
2

)
.

Now fix 1
4 ≤ δ1, δ2 ≤ 1, then multiply (4.19) with

δ1E(un+1, vn+1) + δ2

(
E(un+1, vn+1) + E(un−1, vn)

)
,

and take the expectation to get

δ1 + 2δ2
2

E
[
E2(un+1, vn+1)− E2(un−1, vn)

]
+
δ1
2
E
[∣∣E(un+1, vn+1)− E(un−1, vn)

∣∣2]
+ βk2+βE

[
‖∇vn+ 1

2 ‖2L2

[
(δ1 + δ2)E(un+1, vn+1) + δ2E(un−1, vn)

]]
= E

[(
σ(un, vn−

1
2 )∆nW, v

n+ 1
2

)
·
[
(δ1 + δ2)E(un+1, vn+1) + δ2E(un−1, vn)

]]
+ α̂E

[(
Duσ(un, vn−

1
2 )vn ∆̂nW, vn+

1
2

)
·
[
(δ1 + δ2)E(un+1, vn+1) + δ2E(un−1, vn)

]]
=: Kn,1 + Kn,2 .

(4.20)

We independently estimate the terms Kn,1 and Kn,2.

a) Estimation of Kn,1 in (4.20). This term may be written as the sum of two others:

Kn,1 = (δ1 + δ2)E
[(
σ(un, vn−

1
2 )∆nW, v

n+ 1
2

)
·
(
E(un+1, vn+1)− E(un−1, vn)

)]
+ (δ1 + 2δ2)E

[(
σ(un, vn−

1
2 )∆nW, v

n+ 1
2

)
· E(un−1, vn)

]
:= K

n,1
1 + K

n,1
2 .

(4.21)

We consider K
n,1
1 first. By E

[
|∆nW |4

]
= O(k2), and (A3) we find

K
n,1
1 ≤ Cδ1 E

[
‖σ(un, vn−

1
2 )∆nW‖2L2‖vn+

1
2 ‖2L2

]
+
δ1
4
E
[∣∣E(un+1, vn+1)− E(un−1, vn)

∣∣2]
≤ Cδ1

k
E
[
‖σ(un, vn−

1
2 )‖4L2 |∆nW |4

]
+ Cδ1kE

[
‖vn+ 1

2 ‖4L2

]
+
δ1
4
E
[∣∣E(un+1, vn+1)− E(un−1, vn)

∣∣2]
≤ Cδ1kE

[
1 +

1∑
`=−1

E2(un+`, vn+`)
]

+
δ1
4
E
[∣∣E(un+1, vn+1)− E(un−1, vn)

∣∣2] ,
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where the last term on the right-hand side can be absorbed on the left-hand side of (4.20).

We continue with K
n,1
2 : on using ithe ndependence property of ∆nW , and equation (1.7),

K
n,1
2 ≤ 3

∣∣∣E[(σ(un, vn−
1
2 )∆nW, v

n+1 − vn
)
· E(un−1, vn)

]∣∣∣
= 3

∣∣∣E[(σ(un, vn−
1
2 )∆nW,k∆ũn,

1
2

)
· E(un−1, vn)

]∣∣∣+ 3
∣∣∣E[‖σ(un, vn−

1
2 )∆nW‖2L2 E(un−1, vn)

]∣∣∣
+ 3

∣∣∣E[(σ(un, vn−
1
2 )∆nW,Duσ(un, vn−

1
2 )vn∆̂nW

)
· E(un−1, vn)

]∣∣∣ =: Kn,1
2,1 + K

n,1
2,2 + K

n,1
2,3 .

We split Kn,1
2,1 := K

n,1,A
2,1 +K

n,1,B
2,1 because of (4.1); here, Kn,1,A

2,1 is as Kn,1
2,1 , where ũn,

1
2 is replaced

by un,
1
2 . We use integration by parts, and the fact that σ(un, vn−

1
2 ) = 0 on ∂O, (A4) for

m = 1, the independence property of ∆nW and that E
[
|∆nW |4

]
= O(k2) to conclude

K
n,1,A
2,1 =

9

2

∣∣∣E[− (∇σ(un, vn−
1
2 )∆nW,k∇[un+1 − un−1]

)
· E(un−1, vn)

]∣∣∣
= 9

∣∣∣E[− (∇σ(un, vn−
1
2 )∆nW,k

1−β
2 k1+

β
2 ∇vn+

1
2

)
· E(un−1, vn)

]∣∣∣
≤ Cδ2k3−β E

[
‖Duσ∇un‖2L2E(un−1, vn)

]
+ Cδ2k

3−β E
[
‖Dvσ∇vn−

1
2 ‖2L2E(un−1, vn)

]
+
δ2
4
k2+β E

[
‖∇vn+

1
2 ‖2L2 E(un−1, vn)

]
≤ Cδ2C2

gk
3−βE

[
E2(un, vn) + E2(un−1, vn)

]
+ Cδ2C

2
g k

3−β E
[
‖∇vn−

1
2 ‖2L2 E(un−1, vn)

]
+
δ2
4
k2+β E

[
‖∇vn+

1
2 ‖2L2 E(un−1, vn)

]
,

and we use a similar idea to estimate K
n,1,B
2,1 ,

K
n,1,B
2,1 =

9

2

∣∣∣E[− (∇σ(un, vn−
1
2 )∆nW,βk

2+β∇vn+
1
2

)
· E(un−1, vn)

)]∣∣∣
≤ Cδ2k3+β E

[
‖Duσ∇un‖2L2E(un−1, vn)

]
+ Cδ2k

3+β E
[
‖Dvσ∇vn−

1
2 ‖2L2E(un−1, vn)

]
+ β

δ2
4
k2+β E

[
‖∇vn+

1
2 ‖2L2 E(un−1, vn)

]
≤ Cδ2C2

g k
3+β E

[
E2(un, vn) + E2(un−1, vn)

]
+ Cδ2C

2
g k

3+β E
[
‖∇vn−

1
2 ‖2L2E(un−1, vn)

]
+ β

δ2
4
k2+β E

[
‖∇vn+

1
2 ‖2L2 E(un−1, vn)

]
,

where the last two terms in the right-hand sides of K
n,1,A
2,1 and K

n,1,B
2,1 may be controlled by

those on the left-hand side of (4.20) after summation over 1 ≤ n ≤ N − 1, provided that k is
sufficiently small and β < 1

2 .

Similarly, using (A3), and E
[
|∆nW |4

]
= O(k2) we estimate

K
n,1
2,2 ≤

C

k
E
[
‖σ(un, vn−

1
2 )‖4L2 |∆nW |4

]
+CkE

[
E2(un−1, vn)

]
≤ CkE

[
1+

0∑
`=−1

E2(un+`, vn+`)
]
.
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Using E
[
|∆̂nW |4

]
= O(k6), and (A3) gives

K
n,1
2,3 ≤

C

k
E
[
‖σ(un, vn−

1
2 )∆nW‖2L2 ‖Duσ(un, vn−

1
2 )vn∆̂nW‖2L2

]
+ CkE

[
E2(un−1, vn)

]
≤ C

k
E
[
‖σ(un, vn−

1
2 )‖4L2 |∆nW |4

]
+
C4
g

k
E
[
‖vn‖4L2

∣∣∆̂nW
∣∣4]+ CkE

[
E2(un−1, vn)

]
≤ CkE

[
1 +

0∑
`=−1

E2(un+`, vn+`)
]
.

b) Estimation of Kn,2 in (4.20). By (A4) for m = 1 and using the fact that E
[
|∆̂nW |4

]
=

O(k6), we infer

Kn,2 ≤ α̂2

k
E
[
‖Duσ(un, vn−

1
2 )vn ∆̂nW‖2L2 ‖vn+

1
2 ‖2L2

]
+ CkE

[
E2(un+1, vn+1)

]
+ CkE

[
E2(un−1, vn)

]
≤ α̂4

k3
E
[
‖Duσ(un, vn−

1
2 )vn‖4L2

∣∣∆̂nW
∣∣4]+ CkE

[
‖vn+

1
2 ‖4L2

]
+ CkE

[ 1∑
`=−1

E2(un+`, vn+`)
]

≤ α̂4C4
g k

3 E
[
E2(un, vn)

]
+ CkE

[ 1∑
`=−1

E2(un+`, vn+`)
]
.

Now we insert the estimates from parts a) and b) into (4.20), and sum over 1 ≤ n ≤ N − 1.
Then, for all k ≤ k0 ≡ k0(CL, Cg) assertion (4.3) for p = 1 follows from the implicit version
of the discrete Gronwall lemma.

3) Proof of (4.3) for p ≥ 2. Starting from the identity (4.20), we multiply δ1E
2p−1

(un+1, vn+1)+

δ2
[
E2p−1

(un+1, vn+1) + E2p−1
(un−1, vn)

]
on both sides, and then take expectations. We may

then follow the same argument as in 2) to settle the assertion.

4) Proof of (4.4). Let α̂ = 1. Suppose σ2(v) ≡ 0 ≡ F2(v) in (A3) and β = 0. We combine
both equations in the scheme (1.9)–(1.10) to get[

u`+1 − u`
]
−
[
u` − u`−1

]
= k2∆u`,1/2 + k σ(u`)∆`W + α̂k Duσ(u`)v`∆̂`W

+
k2

2

[
3F (un)− F (un−1)

](4.22)

for all 1 ≤ ` ≤ N . Now sum over the first n steps, and define un+1 :=
∑n

`=1 u
`+1 to get

[
un+1 − un

]
− k2∆un,1/2 =

[
u1 − u0

]
+ k

n∑
`=1

σ(u`)∆`W + α̂k

n∑
`=1

Duσ(u`)v`∆̂`W

+
k2

2

n∑
`=1

[
3F (u`)− F (u`−1)

]
.

(4.23)
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Multiply both sides with un+1/2 and use integration by parts to get

1

2

[
‖un+1‖2L2 − ‖un‖2L2

]
+ k2

(
∇un,1/2,∇un+1/2

)
=
(
u1 − u0, un+1/2

)
+ k
( n∑
`=1

σ(u`)∆`W,u
n+1/2

)
+ α̂k

( n∑
`=1

Duσ(u`)v`∆̂`W,un+1/2
)

+
k2

2

n∑
`=1

(
3F (u`)− F (u`−1), un+1/2

)
=: Kn1 + Kn2 + Kn3 + Kn4 .

(4.24)

We observe that the last term in the left-hand side may be written as

k2
(
∇un,1/2,∇un+1/2

)
=
k2

4

(
∇[un+1 + un−1],∇[un+1 − un−1]

)
=
k2

4

[
‖∇un+1‖2L2 − ‖∇un−1‖2L2

]
.

Taking expectation on both sides leads to

1

2
E
[
‖un+1‖2L2 − ‖un‖2L2

]
+
k2

4
E
[
‖∇un+1‖2L2 − ‖∇un−1‖2L2

]
=

4∑
j=1

E
[
Knj
]
.(4.25)

Since u1 − u0 = kv1, by (B1)i we infer

E
[
Kn1
]
≤ 1

k
E
[
‖u1 − u0‖2L2

]
+ CkE

[
‖un+1/2‖2L2

]
≤ Ck + CkE

[
‖un+1/2‖2L2

]
.(4.26)

Using the Itô isometry and (A3) we infer

E
[
Kn2
]
≤ k

n∑
`=1

E
[
‖σ(u`)‖2L2 |∆`W |2

]
+ CkE

[
‖un+1/2‖2L2

]
≤ Ck2C2

L

n∑
`=1

E
[
1 + ‖u`‖2L2

]
+ CkE

[
‖un+1/2‖2L2

]
.

(4.27)

Using item 4. of Remark 1, and (A4) for m = 1 we infer

E
[
Kn3
]
≤ k

n∑
`=1

E
[
‖Duσ(u`)v`‖2L2

∣∣∆̂`W
∣∣2]+ CkE

[
‖un+1/2‖2L2

]
≤ k4C2

g

n∑
`=1

E
[
‖v`‖2L2

]
+ CkE

[
‖un+1/2‖2L2

]
.

(4.28)

Since v` = 1
k

[
u` − u`−1

]
, we further estimate (4.28) by

≤ k2C2
g

n∑
`=1

E
[
‖u`‖2L2 + ‖u`−1‖2L2

]
+ CkE

[
‖un+1/2‖2L2

]
.

Using (A3) we estimate E
[
Kn4
]

by

E
[
Kn4
]
≤ Ck2C2

L

n∑
`=1

E
[
1 + ‖u`‖2L2 + ‖u`−1‖2L2

]
+ CkE

[
‖un+1/2‖2L2

]
.(4.29)

We insert these estimates into (4.25) and sum over 1 ≤ n ≤ N − 1. Then, for all k ≤ k0 ≡
k0(CL, Cg) and by the implicit version of the discrete Gronwall lemma, there exists a constant
C > 0 such that the assertion (4.4) holds.
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5) Proof of (4.5) for p = 1. To simplify technicalities, we put F ≡ 0. Let us denote

Ẽ(un, un) :=
[
1
2‖u

n‖2L2 + k2

4 ‖∇u
n‖2L2

]
. Then we can rewrite (4.25) as

Ẽ(un+1, un+1)− Ẽ(un, un−1) = Kn1 + Kn2 + Kn3 .(4.30)

Multiply both sides with Ẽ(un+1, un+1), using binomial formula and taking expectation we
obtain

1

2
E
[
Ẽ2(un+1, un+1)− Ẽ2(un, un−1)

]
+

1

2
E
[∣∣Ẽ(un+1, un+1)− Ẽ2(un, un−1)

∣∣2]
= E

[
Kn1 Ẽ(un+1, un+1)

]
+ E

[
Kn2 Ẽ(un+1, un+1)

]
+ E

[
Kn3 Ẽ(un+1, un+1)

]
.

(4.31)

Using Young’s inequality, and arguing similarly to (4.26) shows

E
[
Kn1 Ẽ(un+1, un+1)

]
≤ 1

k3
E
[
‖u1 − u0‖4L2

]
+ k2E

[
‖un+1/2‖4L2

]
+ kE

[
Ẽ2(un+1, un+1)

]
≤ Ck + CkE

[
Ẽ2(un+1, un+1) + Ẽ2(un, un)

]
.

(4.32)

By adding and subtracting Ẽ(un, un−1), and using (A3), we estimate the second term on the
right-hand side of (4.31) by

E
[
Kn2
(
Ẽ(un+1, un+1)− Ẽ(un, un−1)

)]
+ E

[
Kn2 Ẽ(un, un−1)

]
≤ E

[
|Kn2 |2

]
+

1

4
E
[∣∣Ẽ2(un+1, un+1)− Ẽ(un, un−1)

∣∣2]
+ Ck2C2

L

n∑
`=1

E
[
1 + ‖u`‖4L2

]
+ CkE

[
‖un+1/2‖4L2

]
+ CkE

[
Ẽ2(un, un−1)

]
≤ Ck2C2

L

n∑
`=1

E
[
1 + Ẽ2(u`, u`)

]
+ CkE

[
Ẽ2(un, un−1)

]
+

1

4
E
[∣∣Ẽ2(un+1, un+1)− Ẽ(un, un−1)

∣∣2] ,

(4.33)

where the last term in the right-hand side may be absorbed on the left-hand side of (4.31).
By item 4. of Remark 1, and (A4) for m = 1 we estimate

E
[
Kn3 Ẽ(un+1, un+1)

]
≤ 1

k
E
[
|Kn3 |2

]
+ CkE

[
Ẽ2(un+1, un+1)

]
≤ C̃4

g

n∑
`=1

E
[
‖v`‖4L2

∣∣∆̂`W
∣∣4]+ CkE

[
‖un+1/2‖4L2

]
+ CkE

[
Ẽ2(un+1, un+1)

]
≤ C4

gk
6 1

k4

n∑
`=1

E
[
‖u`‖4L2 + ‖u`−1‖4L2

]
+ CkE

[
Ẽ2(un, un) + Ẽ2(un+1, un+1)

]
≤ Ck2

n∑
`=1

E
[
Ẽ2(u`, u`) + Ẽ2(u`−1, u`−1)

]
+ CkE

[
Ẽ2(un, un) + Ẽ2(un+1, un+1)

]
.

(4.34)

Now we insert the estimates into (4.31), and sum over 1 ≤ n ≤ N − 1. Then, for all
k ≤ k0 ≡ k0(CL, Cg) assertion (4.5) for p = 1 follows from the implicit version of the discrete
Gronwall lemma.
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6) Proof of (4.5) for p ≥ 2. Starting from the identity (4.31), we multiply Ẽ2p−1
(un+1, vn+1)

in both sides, and then take the expectation. We may then follow the same argument as in
5) to settle the assertion.

�

5. Strong Rates of Convergence for (α̂, β)−scheme

We prove convergence rate O(k1/2) for the iterates {(un, vn)}n≥1 of the (α̂, β)−scheme for
α̂ ∈ {0, 1}; if additionally σ2(v) ≡ 0 ≡ F2(v) in (A3) holds, we may put β = 0, and

a) the convergence rate improves to O(k) for iterates {un}n≥1 in case α̂ = 0, and

b) to O(k3/2) in case α̂ = 1.

For the convergence analysis, we need the following assumption on (u1, v1).

(B2) Along with (A1)ii and (B1)ii, let u0 = u(0) and v0 = v(0), and (u1, v1) satisfy(
E
[
‖u(t1)− u1‖2H1 + ‖v(t1)− v1‖2L2

])1/2
= O

(
k1/2

)
.

Theorem 5.1. Let (u, v) be the strong solution of (1.3) with A = −∆. Let {(un, vn)}n≥1
be the iterates from (α̂, β)−scheme for k ≤ k0(CL, Cg) sufficiently small, α̂ ∈ {0, 1}, and
0 ≤ β < 1

2 . Then, under the hypotheses (A1)iii, (A2), (A3), and (A4), (A5) for m = 1, 2,
and (B2), there exists C > 0 such that

max
1≤n≤N

(
E
[
‖u(tn)− un‖2H1 + ‖v(tn)− vn‖2L2

])1/2
≤ Ck1/2 .(5.1)

For the following, additionally suppose σ2(v) ≡ 0 ≡ F2(v) in (A3) and that the initial data
u0, u1, v0 satisfy

(5.2)
(
E
[
‖u(t1)− u1‖2L2

]
+

1

k2
E
[
‖kv0 − (u1 − u0)‖2L2

])1/2
= O

(
k3/2

)
.

(i) Consider the (0, 0)−scheme and assume (A1)iii, (A2), (A3), and (A4), (A5) for
m = 1, 2, and (B2). Then there exists C > 0 such that

max
1≤n≤N

(
E
[
‖u(tn, ·)− un‖2L2

])1/2
+

1

2

(
E
[
k

n∑
j=1

∥∥∇[u(tj , ·)− uj
]∥∥2

L2

])1/2

≤ Ck .

(ii) Consider th (1, 0)−scheme and assume (A1)iv, (A2), (A3), and (A4), (A5) for
m = 1, 2, 3, and (B2). Then, there exists C > 0 such that

max
1≤n≤N

(
E
[
‖u(tn, ·)− un‖2L2

])1/2
+

1

2

(
E
[
k

n∑
j=1

∥∥∇[u(tj , ·)− uj
]∥∥2

L2

])1/2

≤ Ck3/2 .

The following remark discusses the realizability of (5.2), and key tools to verify this theorem.

Remark 2. 1. In Section 6, we choose (u0, v0) = (u(0), v(0)), together with

u1 = u0 + k v0 + k2σ(u0)∆0W and v1 = v0 + kσ(u0)∆0W .(5.3)
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We now prove that (5.2) holds in this case: first, we consider (1.3) in integral form on [0, t1],{
u(t1) = u0 +

∫ t1
0 v(s) ds

v(s) = v0 +
∫ s
0 ∆u(τ)dτ +

∫ s
0 F (u(τ))dτ +

∫ s
0 σ(u(τ))dW (τ) , 0 ≤ τ ≤ s ,

(5.4)

and insert (5.4)2 into (5.4)1; a change of order of integration then gives

u(t1) = u0 + t1v0 +

∫ t1

0

∫ s

0

∆u(τ) dτds+

∫ t1

0

∫ s

0

F (u(τ)) dτds+

∫ t1

0

∫ s

0

σ(u(τ))dW (τ) ds

= u0 + kv0 +

∫ t1

0

∫ t1

τ

ds∆u(τ) dτ +

∫ t1

0

∫ t1

τ

ds F (u(τ))dτ +

∫ t1

0

∫ t1

τ

ds σ(u(τ))dW (τ) .

(5.5)

Thus,

u(t1) = u0 + kv0 +

∫ t1

0
(t1 − τ)∆u(τ) dτ +

∫ t1

0
(t1 − τ)F (u(τ)) dτ

+

∫ t1

0
(t1 − τ)σ(u(τ))dW (τ) .

(5.6)

Subtracting (5.3)1 from (5.6) we infer

u(t1)− u1 =

∫ t1

0
(t1 − τ)∆u(τ) dτ +

∫ t1

0
(t1 − τ)F (u(τ)) dτ

+

∫ t1

0
(t1 − τ)σ(u(τ))dW (τ)− k2σ(u0)

(
W (t1)−W (0)

)
.

By (A3), Itô isometry, Lemma 3.2 (i), (ii) and Lemma 3.3 (i) we infer

E
[
‖u(t1)− u1‖2L2

]
≤ Ck2

∫ t1

0
E
[
‖∆u(τ)‖2L2

]
dτ + Ck2

∫ t1

0
E
[
‖F (u(τ))‖2L2

]
dτ

+ Ck2
∫ t1

0
E
[
‖σ(u(τ))− σ(u0)‖2L2

]
ds ≤ Ck3 .

(5.7)

Similarly, by (5.3)1, (A1)i and Itô isometry we get

E
[
‖kv0 − (u1 − u0)‖2L2

]
≤ k4 E

[
‖σ(u0)‖2L2 |∆0W |2

]
≤ Ck5 .(5.8)

Thus, combining (5.7) and (5.8) we get the assertion (5.2) for u1. To validate the choice of
v1 in (5.3)2, we use (A1)i and Itô isometry to get

E
[
‖kv0 − (u1 − u0)‖2L2

]
= E

[
‖kv0 − kv1‖2L2

]
= k2E

[
‖v1 − v0‖2L2

]
≤ k4 E

[
‖σ(u0)‖2L2 |∆0W |2

]
≤ Ck5 ,

which settles the assertion (5.2).

2. For α̃ 6= 0, the additional noise term in (1.10) improves the accuracy of the (α̂, 0)−scheme,

where ∆̃nW is approximated by ∆̂nW . By (1.11), (1.12), and the fact that tn,`+1− tn,` = k2,

we estimate the distance between ∆̃nW and ∆̂nW as

E
[∣∣∆̃nW − ∆̂nW

∣∣2] = E
[∣∣∣− ∫ tn+1

tn

W (s) ds+ k2
k−1∑
`=1

W (tn,`)
∣∣∣2]

= E
[∣∣∣ k−1∑

`=1

∫ tn,`+1

tn,`

(
W (s)−W (tn,`)

)
ds
∣∣∣2] .



HIGHER ORDER DISCRETIZATION OF THE STOCHASTIC SEMILINEAR WAVE EQUATION 21

By the independence property of the increment ∆nW , we further estimate

≤ k
k−1∑
`=1

∫ tn,`+1

tn,`

E
[∣∣W (s)−W (tn,`)

∣∣2] ds ≤ k
k−1∑
`=1

∫ tn,`+1

tn,`

(s− tn,`) ds ≤ Ck4 .(5.9)

3. The basic estimate is (5.1), which will be given in part 1) in the proof below. Its derivation
uses the Hölder estimates in Lemma 3.3 for (u, v) in strong norms. The strategy of proof is
similar to the one used in the stability analysis for (α̂, β)−scheme in Section 4; see item 1. in

Remark 1: the central term to estimate is T
(n)
4 in (5.13), in which we replace the increments

en+1
v −env via the error equation (5.11) to obtain terms which are scaled by k, or the stochastic

increments ∆nW and ∆̃nW . The order limiting term then is T
(n,4)
4,1 in (5.16), which may

be traced back to the noise term σ, which may depend on v as well. In this case (only), the

additional term −k2+β∆vn+1/2 in Scheme 1 is needed to control the effect of noise: see the
additional term on the left-hand side of (5.12) to e.g. bound the corresponding term in (5.14).

The verification of assertions (i) and (ii) differs completely from this strategy: it starts
with the reformulation (5.17) that leads to the error identity (5.20), which then is tested with

e
n+1/2
u ; the noise part may here be estimated in a straight manner.

4. Part 2) in the proof below is conceptually motivated from arguments in [7]; however, their
realization in the stochastic setting differs considerably. We remark that estimate (5.1) is
needed in (5.24) to verify assertion (i) — next to Lemma 2.1 to bound the quadrature error

of the trapezoidal rule for integrands with limited regularity; see term I`,n4 in (5.21).

5. If α̃ = 0, the estimate (5.23) for term I`,n3 in (5.21) restricts the order, and assertion (i)

follows; the improvement (ii) uses α̃ = 1, s.t. this term I`,n3 gives way to the sum I`,n3;1 + I`,n3;2

in (5.28), which are both of higher order; see a)– b) in part 3) in the proof below.

6. For σ ≡ σ(u, v) or F ≡ F (u, v), neither assertion (i) nor (ii) in Theorem 5.1 may be
concluded, due to the restricted Hölder regularity properties of v opposed to u.

In this setting, either σ or F in (5.17) in the proof below would depend on v as well, and
thus would modify corresponding terms in (5.20). For σ ≡ σ(u, v), (a modified version of)
(A3) would additionally create a term Ck2

∑n
`=1 E

[
‖e`v‖2L2

]
on the right-hand side of (5.22),

which may not be handled via Gronwall’s lemma to lift the order. For F ≡ F (u, v), the
argument in (5.25) fails, which rests on Lemma 2.1, and the Hölder continuity of v = ∂tu.

7. In the proof of (5.1), where σ ≡ σ(u, v) and F ≡ F (u, v), we do not require the discrete
energy bounds proved in Lemma 4.1. We only require the energy bounds proved in Lemma 3.2.
This is possible, since we can add and subtract ∇u(tn) or v(tn) whenever L2-norm of ∇un or
vn appears. However, the higher moment bounds in energy norm (proved in Lemma 4.1) are

required to show the improved convergence order O(k3/2) in the proof of (ii) of Theorem 5.1.

Proof of Theorem 5.1. 1) Proof of (5.1). For simplicity, we here give the proof for F ≡ 0.
Correspondingly, let (u, v) solve (1.3), and {(un, vn)}n∈N solves (α̂, β)−scheme, and (u, v)
solves (1.3). We denote by enu := u(tn) − un and env := v(tn) − vn error iterates, which are
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zero on the boundary and solve

en+1
u − enu = k en+1

v +

∫ tn+1

tn

(
v(s)− v(tn+1)

)
ds ,(5.10)

en+1
v − env = k∆en,1/2u +

∫ tn+1

tn

∆

[
2u(s)− [u(tn+1) + u(tn−1)]

2

]
ds

−k2+β ∆e
n+ 1

2
v +

k2+β

2
∆
[
v(tn+1) + v(tn)

]
+

∫ tn+1

tn

[
σ
(
u(s), v(s)

)
− σ

(
un, vn−

1
2
)]

dW (s)− α̂Duσ(un, vn−
1
2 ) vn ∆̂nW .(5.11)

We multiply (5.11) with e
n+ 1

2
v and use (5.10) to get

1

2

[
‖en+1
v ‖2L2 − ‖env‖2L2

]
+

1

4

[
‖∇en+1

u ‖2L2 − ‖∇en−1u ‖2L2

]
+ k2+β‖∇en+

1
2

v ‖2L2 ≤
5∑
j=1

T
(n)
j ,(5.12)

where

T
(n)
1 :=

∫ tn+1

tn

(
∇
[
v(s)− v(tn+1)

]
,∇en,

1
2

u

)
ds+

∫ tn

tn−1

(
∇
[
v(s)− v(tn)

]
,∇en,

1
2

u

)
ds ,

T
(n)
2 := −

∫ tn+1

tn

(
∇
[2u(s)− [u(tn+1) + u(tn−1)]

2

]
,∇en+

1
2

v

)
ds ,

T
(n)
3 :=

k2+β

2

(
∇
[
v(tn+1) + v(tn)

]
,∇en+

1
2

v

)
,

T
(n)
4 :=

(∫ tn+1

tn

[
σ
(
u(s), v(s)

)
− σ(un, vn−

1
2 )
]

dW (s), e
n+ 1

2
v

)
,

T
(n)
5 := − α̂

(
Duσ(un, vn−

1
2 )vn ∆̂nW, e

n+ 1
2

v

)
.

We estimate the expectation of each term on the right-hand side of (5.12). By Lemma 3.3
(iii), we infer

E
[
T
(n)
1 + T

(n)
2

]
≤ Ck2 + CkE

[
‖∇en+1

u ‖2L2 + ‖∇en−1u ‖2L2

]
+ CkE

[
‖en+1
v ‖2L2 + ‖env‖2L2

]
.

We use Lemma 3.2 (ii) to estimate

E
[
T
(n)
3

]
≤ k2+β

2
E
[
‖∇en+

1
2

v ‖2L2

]
+ Ck2+β .

By properties of ∆nW we rewrite the term T
(n)
4 as

E
[
T
(n)
4

]
=

1

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW, e

n+1
v − env

)]
+

1

2
E
[(∫ tn+1

tn

[
σ
(
u(s), v(s)

)
− σ

(
u(tn), v(tn−1/2)

)]
dW (s), en+1

v − env
)]

:= T
(n)
4,1 + T

(n)
4,2 .

(5.13)
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In order to estimate T
(n)
4,1 , we use equation (5.11) to write

T
(n)
4,1 =

1

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,k∆en,1/2u

)]
+

1

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,

∫ tn+1

tn

∆
[2u− [u(tn+1) + u(tn−1)]

2

]
ds

)]
+

1

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,−k2+β ∆vn+

1
2

)]
+

1

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,

∫ tn+1

tn

[σ(u, v)− σ(un, vn−
1
2 )] dW (s)

)]
+
α̂

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,Duσ(un, vn−

1
2 ) vn ∆̂nW

]
:= T

(n,1)
4,1 + T

(n,2)
4,1 + T

(n,3)
4,1 + T

(n,4)
4,1 + T

(n,5)
4,1 .

We consider T
(n,1)
4,1 first; to properly address the dependence of σ on v, we first restate it

with the help of (5.10) and use the fact that σ
(
u(tn), v(tn−1/2)

)
= σ(un, vn−1/2) = 0 on ∂O

to obtain

T
(n,1)
4,1 =

1

2
E
[([

σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,k∆[en+1

u − en−1
u ]

)]
= −1

2
E
[(
∇
[
σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW, 2k

2∇en+1/2
v

)]
−1

2
E
[(
∇
[
σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)

]
∆nW,k∇Rn+1/2

v

)]
=: T

(n,1)
4,1,A + T

(n,1)
4,1,B ,

where Rn+1/2
v :=

∫ tn+1

tn

(
v(s)− v(tn+1)

)
ds+

∫ tn
tn−1

(
v(s)− v(tn)

)
ds. By chain rule, and (A4)

for m = 1 we obtain

T
(n,1)
4,1,A ≤ −E

[
Cg
{

2‖∇u(tn)‖L2 + 2‖∇v(tn−1/2)‖L2 + ‖∇enu‖L2 + ‖∇en−1/2v ‖L2

}
|∆nW |

k1−
β
2 k1+

β
2 ‖∇en+1/2

v ‖L2

]
.

We apply Young’s inequality, Ito isometry, (4.2) and Lemma 3.2 (i), (ii) to further bound

T
(n,1)
4,1,A by

T
(n,1)
4,1,A ≤ C2

g k
2−β E

[{
2‖∇u(tn)‖2L2 + 2‖∇v(tn−1/2)‖2L2 + ‖∇enu‖2L2 + ‖∇en−1/2

v ‖2L2

}
|∆nW |2

]
+

1

4
k2+β E

[
‖∇en+1/2

v ‖2L2

]
≤ Ck3−β + Ck3−βE[‖∇enu‖2L2 ] + C2

g k
3−β E

[
‖∇en−1/2

v ‖2L2

]
+

1

4
k2+β E

[
‖∇en+1/2

v ‖2L2

]
,

(5.14)

where the last two terms on the right-hand side may be absorbed on the left-hand side of
(5.12) for k ≤ k0 sufficiently small, and β < 1

2 . Arguing similarly and by Lemma 3.3 (iii) we
infer

T
(n,1)
4,1,B ≤ Ck

3−β + C2
g k

3−β E
[
‖∇en−1/2v ‖2L2

]
+ Ck2+β ,(5.15)

where the second term on right-hand side may be absorbed on the left-hand side of (5.12) for
k ≤ k0 sufficiently small, and β < 1

2 .
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We now estimate T
(n,2)
4,1 : by properties of ∆nW , (A3) and Lemma 3.3 (iii) we get

T
(n,2)
4,1 ≤ CLkE

[(
‖∇u(tn)−∇un‖2L2 + ‖v(tn−1/2)− vn−1/2‖2L2

)
|∆nW |2

]
+ C

∫ tn+1

tn

E
[∥∥∥∆

[
u(s)− u(tn+1) + u(tn−1)

2

]∥∥∥2
L2

]
≤ CkE

[
‖∇enu‖2L2 + ‖env‖2L2 + ‖en−1v ‖2L2

]
+ Ck3 .

Using similar arguments as for the estimate of (5.14) we infer

T
(n,3)
4,1 ≤ C2

gk
3+βE

[
‖∇u(tn)‖2L2 + 2‖∇v(tn−1/2)‖2L2 + ‖∇un‖2L2 + ‖∇en−1/2v ‖2L2

]
+

1

4
k2+β E

[
‖∇en+1/2

v ‖2L2 + ‖∇v(tn+1/2)‖2L2

]
≤ C2

g k
3+β E

[
‖∇en−1/2v ‖2L2

]
+

1

4
k2+β E

[
‖∇en+1/2

v ‖2L2

]
+ Ck2+β .

Using (A3), Lemma 3.3 (ii), and properties of ∆nW , we estimate

T
(n,4)
4,1 ≤ C E

[
‖σ(u(tn), v(tn−1/2))− σ(un, vn−1/2)‖2L2 |∆nW |2

]
+ C

∫ tn+1

tn

E
[
‖σ
(
u(s), v(s)

)
− σ

(
u(tn), v(tn−1/2)

)
‖2L2

]
ds

≤ CkE
[
‖∇enu‖2L2 + ‖env‖2L2 + ‖en−1v ‖2L2

]
+ CL

∫ tn+1

tn

E
[
‖∇[u− u(tn)]‖2L2 + ‖v − v(tn−1/2)]‖2L2

]
≤ CkE

[
‖∇enu‖2L2 + ‖env‖2L2 + ‖en−1v ‖2L2

]
+ Ck2 .

(5.16)

Using (A3), (A4) for m = 1, item 4. of Remark 1, and using Lemma 3.2 (i) (due to addition
and subtraction of v(tn) term to vn) we estimate

T
(n,5)
4,1 ≤ kE

[
‖σ
(
u(tn), v(tn−1/2)

)
− σ(un, vn−1/2)‖2L2

]
+
α̂2

4
k3 E

[
‖Duσ(un, vn−

1
2 ) vn‖2L2

]
≤ CLkE

[
‖∇enu‖2L2 + ‖en−1/2v ‖2L2

]
+
α̂2

4
C2
g k

3 E
[
‖env‖2L2

]
+ Ck3 .

Similar arguments, in combination with the Hölder estimates in Section 3.1 may be used to

estimate T
(n)
4,2 in (5.13). Now, we estimate the last term in the right-hand side of (5.12).

Using (A4) for m = 1, Itô isometry, and Lemma 3.2 (i) (due to addition and subtraction of
v(tn) term to vn), we obtain

E
[
T
(n)
5

]
≤ α̂2

k
E
[
‖Duσ(un, vn−

1
2 )vn‖2L2

∣∣∆̂nW
∣∣2]+ CkE

[
‖en+1
v ‖2L2 + ‖env‖2L2

]
≤ α̂2C2

g k
2 E
[
‖vn‖2L2

]
+ CkE

[
‖en+1
v ‖2L2 + ‖env‖2L2

]
≤ Ck2 + CkE

[
‖en+1
v ‖2L2 + ‖env‖2L2

]
.

We now insert these estimates into (5.12), for which we apply expectations, and sum over
iteration steps. The implicit version of the discrete Gronwall lemma then yields the assertion,
again provided k ≤ k0 is sufficiently small.
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2) Proof of (i). Suppose σ2(v) ≡ 0 ≡ F2(v) in (A3), and α̂ = 0. We combine both equations
in the (0, 0)−scheme,

(5.17)
[
u`+1 − u`

]
−
[
u` − u`−1

]
= k2∆u`,1/2 +

k2

2

[
3F (un)− F (un−1)

]
+ kσ(u`)∆`W

for all 1 ≤ ` ≤ N . Now sum over the first n steps, and define un+1 :=
∑n

`=1 u
`+1. We arrive

at

(5.18)
[
un+1− un

]
− k2∆un,1/2 =

[
u1− u0

]
+
k2

2

n∑
`=1

[
3F (u`)−F (u`−1)

]
+ k

n∑
`=1

σ(u`)∆`W .

We proceed correspondingly with (3.2), which we integrate in time: thanks to (3.1), we get
(0 ≤ λ ≤ µ ≤ T )

[
u(µ)− u(λ)

]
−
∫ µ

λ

∫ s

0
∆u(ξ) dξds

= [µ− λ]v0 +

∫ µ

λ

∫ s

0
F
(
u(ξ)

)
dξds+

∫ µ

λ

∫ s

0
σ
(
u(ξ)

)
dW (ξ)ds .

(5.19)

For every s ∈ [tn, tn+1], we write
∫ s
0 ·ds =

∑ns−1
`=0

∫ t`+1

t`
·ds, where ns = b skc. Setting µ = tn+1,

λ = tn in (5.19), subtracting (5.18) from (5.19) then leads to

[
en+1
u − enu

]
− k2∆en,1/2u =

[
kv0 − (u1 − u0)

]
+ k

n∑
`=1

[
σ
(
u(t`)

)
− σ(u`)

]
∆`W

+

∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

[
σ
(
u(ξ)

)
− σ

(
u(t`)

)]
dW (ξ)ds

+

∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

∆
[
u(ξ)− u(t`+1) + u(t`−1)

2

]
dξds(5.20)

+

∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

F
(
u(ξ)

)
− 1

2

[
3F
(
u(t`)

)
− F

(
u(t`−1)

)]
dξds

+
k2

2

n∑
`=1

(
3
[
F
(
u(t`)

)
− F (u`)

]
−
[
F
(
u(t`−1)

)
− F (u`−1)

])
,

which holds for all n ≥ 1. Now multiply with e
n+1/2
u , and observe that

k2
(
∇en,1/2u ,∇en+1/2

u

)
=
k2

4

(
∇en+1

u +∇en−1u ,∇[en+1
u − en−1u ]

)
=
k2

4

[
‖∇en+1

u ‖2L2 − ‖∇en−1u ‖2L2

]
.
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Using this in (5.20) then leads to

1

2

[
‖en+1
u ‖2L2 − ‖enu‖2L2

]
+
k2

4

[
‖∇en+1

u ‖2L2 − ‖∇en−1u ‖2L2

]
=
(
kv0 − [u1 − u0], en+1/2

u

)
+ k
( n∑
`=1

[
σ
(
u(t`)

)
− σ(u`)

]
∆`W, e

n+1/2
u

)
+
(∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

[
σ
(
u(ξ)

)
− σ

(
u(t`)

)]
dW (ξ)ds, en+1/2

u

)
−
∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

(
∇
[
u(ξ)− u(t`+1) + u(t`−1)

2

]
,∇en+1/2

u

)
dξ ds(5.21)

+

∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

(
F (u)− 1

2

[
3F
(
u(t`)

)
− F

(
u(t`−1)

)]
, en+1/2
u

)
dξds

+
k2

2

n∑
`=1

(
3
[
F
(
u(t`)

)
− F (u`)

]
−
[
F (u(t`−1))− F (u`−1)

]
, en+1/2
u

)
=: In1 + I`,n2 + . . .+ I`,n6 .

We estimate the six terms in (5.21) separately. From (5.2) we infer

E
[
In1
]
≤ C

k
E
[
‖kv0 − [u1 − u0]‖2L2

]
+ CkE

[
‖en+1/2
u ‖2L2

]
≤ Ck4 + CkE

[
‖en+1/2
u ‖2L2

]
.

For I`,n2 , by Itô isometry, and (A3), we have

E
[
I`,n2

]
≤ CkE

[
‖en+1/2
u ‖2L2

]
+ kE

[∥∥∥ n∑
`=1

[
σ
(
u(t`)

)
− σ(u`)

]
∆`W

∥∥∥2
L2

]
(5.22)

≤ CkE
[
‖en+1/2
u ‖2L2

]
+ C̃Lk

2
n∑
`=1

E
[
‖e`u‖2L2

]
.

The term I`,n3 can be controlled by Itô isometry, (A3), and Lemma 3.3 (i) as

E
[
I`,n3

]
= E

[(∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

[
σ
(
u(ξ)

)
− σ

(
u(t`)

)]
dW (ξ)ds, en+1/2

u

)]
≤ C̃L

∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

E
[∥∥u(ξ)− u(t`)

∥∥2
L2

]
dξ + CkE

[
‖en+1/2
u ‖2L2

]
(5.23)

≤ C̃Lk
3 + CkE

[
‖en+1
u ‖2L2 + ‖enu‖2L2

]
.

We use Lemma 2.1 to estimate E[I`,n4 ]. For this, we choose f(ξ) = E
[
(∇u(ξ),∇en+1/2

u )
]

for

all ξ ∈ [tn, tn+1]. By Lemma 3.3 (iii), we have γ = 1
2 in (2.1),∣∣∣E[(∇[v(t)− v(s)],∇en+1/2

u

)]∣∣∣ ≤ C(E[‖∇en+1/2
u ‖2L2

])1/2
|t− s|

1
2 .
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As a consequence,∫ t`+1

t`

E
[(
∇
[
u(ξ)− u(t`+1) + u(t`−1)

2

]
,∇en+1/2

u

)]
dξ ≤ C

(
E
[∥∥∇en+1/2

u

∥∥2
L2

]) 1
2
k

5
2 .

This estimate then yields

(5.24) E
[
I`,n4

]
≤ Ck

5
2

(
E
[∥∥∇en+1/2

u

∥∥2
L2

])1/2
≤ k2

4
E
[
‖∇en+1/2

u ‖2L2

]
+ Ck3,

by using Young’s inequality. By (5.1) the leading term on the right-hand side is again bounded
above by Ck3.

Next, we turn to E[I`,n5 ]: as a first step, we split it into two parts,

E[I`,n5 ] =

∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

E
[(
F
(
u(ξ)

)
− 1

2

[
F
(
u(t`)

)
+ F

(
u(t`+1)

)]
, en+1/2
u

)]
dξds

+
k2

2

n∑
`=1

E
[(
F
(
u(t`+1)

)
− 2F

(
u(t`)

)
+ F

(
u(t`−1)

)
, en+1/2
u

)]
=: E

[
I`,n5;1 + I`,n5;2

]
.

To handle these two terms, we use Lemma 2.1 with f(ξ) = E
[(
F
(
u(ξ)

)
, e
n+1/2
u

)]
where

ξ ∈ [tn, tn+1], and verify γ = 1
2 in (2.1): by (A4) for m = 1, 2, the chain-rule and the

mean-value theorem∣∣∣(DtF
(
u(t)

)
−DtF

(
u(s)

)
, en+1/2
u

)∣∣∣
=
∣∣∣(DuF

(
u(t)

)
v(t)−DuF

(
u(s)

)
v(s), en+1/2

u

)∣∣∣
=
∣∣∣((DuF (u(t))−DuF (u(s))

)
v(t) +DuF (u(s))(v(t)− v(s)), en+1/2

u

)∣∣∣
=
∣∣∣((D2

uF (u(t)− u(s))
)
(v(t)) +DuF (u(s))(v(t)− v(s)), en+1/2

u

)∣∣∣
≤ C̃g ‖u(t)− u(s)‖H1‖v(t)‖H1‖en+1/2

u ‖L2 + C̃g ‖v(t)− v(s)‖L2‖en+1/2
u ‖L2 .

(5.25)

where D2
uF := D2

uF (ũρ) and ũρ := ρu(t) + (1 − ρ)u(s), for some ρ ∈ [0, 1]. Lemma 3.3 (ii)

then establishes γ = 1
2 in (2.1), and so Lemma 2.1 yields

E
[
I`,n5;1

]
≤ Ck

5
2C
(
E
[∥∥en+1/2

u

∥∥2
L2

]) 1
2 ≤ Ck4 + kE

[∥∥en+1/2
u

∥∥2
L2

]
.

In order to estimate E[I`,n5;2 ], we may write for some θ ∈ (0, 1)

F (u(t`+1)) = F (u(t`)) +DuF (u(t`))(u(t`+1)− u(t`))

+
1

2

(
D2
uF
(
u(t`) + θ(u(t`+1)− u(t`))

)
(u(t`+1)− u(t`))

)(
u(t`+1)− u(t`)

)
,

and

F (u(t`−1)) = F (u(t`)) +DuF (u(t`))(u(t`−1)− u(t`))

+
1

2

(
D2
uF
(
u(t`) + θ(u(t`−1)− u(t`))

)
(u(t`−1)− u(t`))

)(
u(t`−1)− u(t`)

)
.
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Then, adding the above two terms we get

F
(
u(t`+1)

)
− 2F

(
u(t`)

)
+ F

(
u(t`−1)

)
= DuF

(
u(t`+1)− 2u(t`) + u(t`−1)

)
+

1

2

(
D2
uF (u(t`+1)− u(t`))

)
(u(t`+1)− u(t`))

+
1

2

(
D2
uF (u(t`−1)− u(t`))

)
(u(t`−1)− u(t`)) ,

where DuF := DuF (u(t`)), D
2
uF := D2

uF
(
u(t`)+θ(u(t`+1)−u(t`))

)
and D2

uF := D2
uF
(
u(t`)+

θ(u(t`−1) − u(t`))
)
. We begin with the first term on the right-hand side: first, by the mean

value theorem, there exist ζ1, ζ2 ∈ [0, 1], such that

u(t`+1)− u(t`) = kv
(
ζ1t` + [1− ζ1]t`+1

)
, −

[
u(t`)− u(t`−1)

]
= −kv

(
ζ2t`−1 + [1− ζ2]t`

)
.

Hence, Lemma 3.3 (ii) settles O(k
3
2 ) for this term. If combined with Lemma 3.3 (i), (A4)

for m = 1, 2, we can conclude

E[I`,n5;2 ] ≤ Ck4 + kE
[
‖en+1/2
u

∥∥2
L2

]
.

Finally, by (A3) we infer

E[I`,n6 ] ≤ Ck2
( n∑
`=1

E
[
‖e`u‖2L2 + ‖e`−1u ‖2L2

]
+ E

[
‖en+1/2
u ‖2L2

])
.

Now we combine all the above estimates in (5.21) in summarized form, then the implicit
version of the discrete Gronwall lemma yields assertion (i).

3) Proof of (ii). Similar to (5.18), we have for α̂ = 1[
un+1 − un

]
− k2∆un,1/2 −

[
u1 − u0

]
= k

n∑
`=1

σ(u`)∆`W + α̂k

n∑
`=1

Duσ(u`)v`∆̂`W +
k2

2

n∑
`=1

[
3F (u`)− F (u`−1)

]
.

(5.26)

So the additional term on the right-hand side of the error equation (5.20) is

α̂k
n∑
`=1

−Duσ(u`)v`∆̃`W + α̂k
n∑
`=1

−Duσ(u`)v`
[
(∆̂`W − ∆̃`W )

]
:= I`,n3,A + I`,n3,B .(5.27)

We now follow the argumentation in 2): multiplication with e
n+1/2
u of the modified error

equation (5.20) then leads to (5.21), where I`,n3,A is merged with I`,n3 which may be written by
the sum of two terms

I`,n3,A1
+ I`,n3,A2

=:
(∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

[
Duσ

(
u(t`)

)
v(t`)−Duσ(u`)v`

]
(ξ − t`) dW (ξ)ds, en+1/2

u

)
+
(∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

[
σ
(
u(ξ)

)
− σ

(
u(t`)

)
−Duσ

(
u(t`)

)
v(t`)(ξ − t`)

]
dW (ξ)ds, en+1/2

u

)
.

(5.28)

We independently bound the other error terms in (5.21) in this modified setting:
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a) To bound E[I`,n3;A1
] in (5.28), we use Itô isometry, the mean-value theorem, (A4) form = 1, 2,

to get

E
[
I`,n3;A1

]
≤ kE

[1

k
·
∥∥∥∫ tn+1

tn

n∑
`=1

∫ t`+1

t`

[
Duσ

(
u(t`)

)
v(t`)−Duσ(u`)v`

]
× (ξ − t`) dW (ξ) ds

∥∥∥2
L2

]
+ kE

[
‖en+1/2
u ‖2L2

]
≤
∫ tn+1

tn

n∑
`=1

E
[ ∫ t`+1

t`

∥∥Duσ
(
u(t`)

)
v(t`)−Duσ(u`)v`

∥∥2
L2

× (ξ − t`)2 dξ ds
]

+ kE
[
‖en+1/2
u ‖2L2

]
≤ Ck4

n∑
`=1

E
[∥∥Duσ

(
u(t`)

)
v(t`)−Duσ(u`)v`

∥∥2
L2

]
+ kE

[
‖en+1/2
u ‖2L2

]
≤ Ck4

n∑
`=1

(
E
[
‖e`v‖2L2

]
+ E

[
Ĩ`,n3;A1

])
+ kE

[
‖en+1/2
u ‖2L2

]
,

(5.29)

where Ĩ`,n3;A1
:=
∥∥[Duσ

(
u(t`)

)
− Duσ(u`)]v

(
t`
)∥∥2

L2 . In order to handle the first term in the

right-hand side, we estimate (5.29) further by

≤ Ck2
n∑
`=1

(
E
[
‖e`u‖2L2 + ‖e`−1u ‖2L2

]
+ k2E

[
Ĩ`,n3;A1

])
+ kE

[
‖en+1/2
u ‖2L2

]
.

We estimate the second term in the right-hand side as

Ck4
n∑
`=1

E
[
Ĩ`,n3;A1

]
≤ Ck4

n∑
`=1

E
[
‖e`u‖2L2‖v(t`)‖2L∞

]
≤ Ck · k3

n∑
`=1

E
[
‖e`u‖L2‖e`u‖L2‖v(t`)‖2L∞

]
≤ Ck2

n∑
`=1

E
[
‖e`u‖2L2

]
+ Ck6

n∑
`=1

E
[
‖e`u‖4L2

]
+ Ck6

n∑
`=1

E
[
‖v(t`)‖8L∞

]
,

(5.30)

where the last term on the right-hand side is bounded by Ck5 due to Lemma 3.2 (iii). The

second term on the right-hand side is bounded further by Ck6
∑n

`=1 E
[
‖u(t`)‖4L2 + ‖u`‖4L2

]
,

which may be bounded by Ck5, thanks to Lemma 3.2 (i) for p = 2, and (4.5).

b) Now consider E[I`,n3;A2
]. Let ξ ∈ [tn, tn+1]; we use the mean-value theorem twice, (A4) for

m = 1, 2, to conclude∥∥σ(u(ξ)
)
− σ

(
u(t`)

)
−Duσ

(
u(t`)

)
v(t`)(ξ − t`)

∥∥2
L2

=
∥∥∥[Duσ(ũζ)−Duσ

(
u(t`)

)
]

∫ ξ

t`

v(η) dη +Duσ
(
u(t`)

) ∫ ξ

t`

[
v(η)− v(t`)

]
dη
∥∥∥2
L2

≤ C‖∇u(ξ)−∇u(t`)‖4L2 + Ck2 sup
t`≤ξ≤t`+1

‖v(ξ)− v(t`)‖2L2 ,

(5.31)
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where ũζ = ζu(ξ) + (1− ζ)u(t`), for some ζ ∈ [0, 1]. Thus, we have

E[I`,n3;A2
] ≤ CkE

[
sup

t`≤ξ≤t`+1

(
‖∇u(ξ)−∇u(t`)‖4L2 + k2 ‖v(ξ)− v(t`)‖2L2

)]
+ kE

[
‖en+1/2
u ‖2L2

]
≤ Ck4 + kE

[
‖en+1/2
u ‖2L2

]
.

c) To estimate the term involving I`,n3,B, which is defined in (5.27), we use Young’s inequality
to write

E
[(
I`,n3,B, e

n+1/2
u

)]
≤ α̂2

k
k2 E

[∥∥∥ n∑
`=1

Duσ(u`)v`
[
∆̂`W − ∆̃`W

]∥∥∥2
L2

]
+ kE

[
‖en+1/2
u ‖2L2

]
.

Then, we use (A4) for m = 1, and independence of increments ∆nW to get

≤ α̂2C2
g k

n∑
`=1

E
[
‖Duσ(u`)v`‖2L2

∣∣∆̂`W − ∆̃`W
∣∣2]+ kE

[
‖en+1/2
u ‖2L2

]
.

Finally, we use (5.9) and (4.2) of Lemma 4.1 to obtain

≤ α̂2C2
g k

5
n∑
`=1

E
[
‖v`‖2L2

]
+ kE

[
‖en+1/2
u ‖2L2

]
≤ Ck4 + kE

[
‖en+1/2
u ‖2L2

]
.(5.32)

d) We may modify the argument in part 2) to improve the bound E[I`,n4 ] in (5.24). Using
integration by parts and using Lemma 3.3 (iv) instead, we verify (2.1) of Lemma 2.1 for

γ = 1/2 (by choosing f(ξ) = E
[
(∇u(ξ),∇en+1/2

u )
]

for all ξ ∈ [tn, tn+1] ) to get∣∣∣E[(∇[v(t)− v(s)],∇en+1/2
u

)]∣∣∣ ≤ C(E[‖en+1/2
u ‖2L2

])1/2
|t− s|

1
2 .

Using this estimate we infer for I`,n4 in (5.21) that

E
[
I`,n4

]
≤ Ck

5
2

(
E
[∥∥en+1/2

u

∥∥2
L2

])1/2
≤ CkE

[
‖en+1/2
u ‖2L2

]
+ Ck4 .

Thanks to the above estimates in a)–c), and after summation over all iteration steps in
(5.21) we may then conclude assertion (ii). �

6. Computational experiments

In this section, we provide computational studies to check

• how essential the assumptions (A1)–(A5) and (B1)–(B2) (i.e., needed in Sections
3–5) are in actual computations. In this respect, we computationally study the impact
of rough initial data (u0, v0) on the discrete dynamics, as well as of drift nonlinearities
F (see Example 4).
• If the diffusion σ ≡ σ(v) and the drift F ≡ 0, then there is a reduction of convergence

order as proved in (5.1) of Theorem 5.1; see Example 3.
• The diffusion σ ≡ σ(u, v) = 0 on the boundary, and satisfies (A3). Example 5

discusses the effect that noise has, which is non-homogeneous on the boundary, or
violates (A3).
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• By Theorem 4.1, β in the (α̂, β)-scheme needs be chosen from (0, 1/2) to ensure stable,
accurate simulation of (1.3) with σ ≡ σ(u, v) and F ≡ F (u, v). The simulations in
Example 6 evidence a small choice for β for faster Monte Carlo approximation.

We use the lowest order conforming finite element method to simulate the (α̂, β)−scheme
on a regular triangulation Th of O; see [2]. Let the finite element space be

Vh :=
{
uh ∈ H1

0 : uh
∣∣
K
∈ P1(K) ∀K ∈ Th

}
,

where P1(K) denotes the space of polynomials of degree one on K ∈ Th.

As initial data, we choose u1 and v1 as

u1 = u0 + kv0 + k2σ(u0)W (t1), and v1 = v0 + kσ(u0)W (t1) ,(6.1)

where u0, v0 (not finite element valued) satisfy assumptions (A1)iv and (B2). Recall the

definitions for ũn,1/2 and ∆̂nW in (4.1) and (1.11), respectively. We implement the following
scheme:

Scheme 3. Let α̂ ∈ {0, 1}, and 0 ≤ β < 1
2 . Let {tn}Nn=0 be a mesh of size k > 0 cov-

ering [0, T ], and (6.1). For every n ≥ 1, find a [Vh]2-valued, Ftn+1-measurable random

variable (un+1
h , vn+1

h ) such that(
un+1
h − unh, φh) = k(vn+1

h , φh) ∀φh ∈ Vh ,(6.2)

(vn+1
h − vnh , ψh) = −k

(
∇ũn,1/2h ,∇ψh

)
+
(
σ(unh, v

n− 1
2

h )∆nW,ψh

)
+ α̂

(
Duσ(unh, v

n− 1
2

h )vnh ∆̂nW,ψh

)
(6.3)

+
k

2

(
3F (unh, v

n
h)− F (un−1h , vn−1h ), ψh

)
∀ψh ∈ Vh .

6.1. Convergence rates. The numerical experiments are performed using MATLAB. In
this section, for all the examples we choose O = (0, 1), T = 1, A = −∆ in (1.3). We
choose u0(x) = sin(2πx) and v0(x) = sin(3πx), and u1, v1 are chosen as in (6.1). A reference
solution is computed with a step size kref = 2−7 and href = 2−7 to approximate the exact
solution and the sample Wiener processes W . The expected values are approximated by
computing averages over MC = 3000 number of samples. The plots are shown for the time
steps k = {2−3, · · · , 2−6}.

Example 2 in Section 1 provides computational evidence for the improved convergence
rate O(k3/2) for the scheme (1.9)–(1.10) with α̂ = 1 in the situations where σ ≡ σ(u). In

the following example, we consider σ ≡ σ(v), and find a convergence rates of O(k1/2) in
simulations (A)–(C) of Fig. 6.1, which validates (5.1) of Theorem 5.1. So we observe a
reduction of convergence order if compared to Example 2, where σ ≡ σ(u).

Example 3. Consider σ(v) = 3
2v and F ≡ 0. Fig. 6.1 displays convergence studies for

the (α̂, β)−scheme for α̂ = 1 and β = 1/4 : the plots (A)–(C) of L2-errors in u,∇u and v,

respectively, confirm convergence order O(k1/2); see (5.1) of Theorem 5.1.

In the following example, we discuss four different cases where

(i) F ≡ F (u, v) is non-zero on the boundary, but Lipschitz and σ ≡ σ(u);
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Figure 6.1. (Example 3) Rates of convergence of the
(
1, 14
)
−scheme with

σ(v) = 3
2v and F ≡ 0.

(ii) F ≡ F (u, v) only Hölder continuous, and σ ≡ σ(u);
(iii) F ≡ F (u, v) is same as (i), and σ ≡ σ(u, v) satisfying (A3);
(iv) F ≡ F (u, v) is same as (ii), and σ ≡ σ(u, v) satisfying (A3).

We observe that although F ≡ F (u, v) violates (A3) in (ii), we still get improved convergence

rates, but if σ ≡ σ(u, v), we get the convergence order O(k1/2) as shown in (5.1) of Theorem
5.1.

Example 4. We consider the following cases:

(i) σ(u) = u and F (u, v) = cos(u) + 2v;
(ii) σ(u) = u and F (u, v) =

√
u+
√
v + 2;

(iii) σ(u, v) = u
1+u2

+ v and F (u, v) = cos(u) + 2v;

(iv) σ(u, v) = u
1+u2

+ v and F (u, v) =
√
u+
√
v + 2;

The errors are computed via the (α̂, β)−scheme with α̂ = 1 for β = 1/4 : the plots (A)–(C)

for the problem (i) evidence the convergence order O(k3/2) for u,∇u, and O(k) for v. We
observe the same convergence rates for the problem (ii) despite the lack of Lipschitzness of F
which violates (A3); see plots (D)–(F) of Fig. 6.2. The plots (G)–(I) of L2-errors in u,∇u
and v, respectively, for the problem (iii) and evidence the convergence order O(k1/2) as shown
in (5.1) of Theorem 5.1. We observe the same order of convergence for the problem (iv); see
plots (J)–(L) of Fig. 6.2. Thus, this example shows that the estimate (5.1) is sharp in the
case of diffusion σ ≡ σ(u, v).

In the next example, we drop the assumption on σ ≡ σ(u) to be Lipschitz and zero on
the boundary to see which of these violations spot the reduction of the convergence order of
scheme (1.9)-(1.10).

Example 5. Let F ≡ 0. Consider the following cases:

(i) σ(u) = 1
1+u2

;

(ii) σ(u) =
√
|u|.

In Fig. 6.3, the errors are computed via the scheme (1.9)–(1.10) with α̂ = 1. For problem
(i) (nonzero boundary), the plots (A)–(B) for L2-errors in u,∇u, respectively, show the con-

vergence order O(k3/2) and the plot (C) for L2-error in v shows O(k). For the problem (ii)
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Figure 6.2. (Example 4) Rates of convergence of the
(
1, 14
)
−scheme.

(non-Lipschitz), the convergence rates for L2-errors in u,∇u are reduced to O(k); see plots
(D)–(E), but L2-error in v remains same as O(k); see plot (F).

6.2. Choice of β and required number of MC.

Example 6. Let O = (0, 1), T = 0.5, A = −∆, F ≡ 0, σ(v) = 5v. We compute W on

the mesh of size k = 2−12 covering [0, 0.5]. In the (α̂, β)-scheme, the term ũn,
1
2 = un,

1
2 +

βk1+βvn+
1
2 involves β, where the last term creates an additional numerical dissipation term

in (1.3) to control discretization effect of the noise. For β = 0 with σ ≡ σ(u) and F ≡ F (u),
the scheme (1.9)–(1.10) is stable, but for general case we require β ∈ (0, 1/2) for the stability
of the (α̂, β)-scheme; see Lemma 4.1. For increased value of β, stabilization effect vanishes
for small k. Thus, a smaller choice of β is preferred to have the stability of the scheme. The
snapshot (A) in Fig. 6.4 shows for β = 0, 14 ,

1
2 ,

3
4 , 1, that at least MC = 400, 600, 800, 1000, 1400,
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Figure 6.3. (Example 5) Rates of convergence of the the scheme (1.9)–
(1.10) for α̂ = 1.

are needed to have a steady of the energy E at time T = 0.5. The snapshot (B) evidence a
higher number of MC as we increase β to have a steady energy curve.
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Figure 6.4. (Example 6) (α̂, β)-scheme with σ(v) = 5v, and F ≡ 0.
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Appendix A. Proof of Lemma 3.2

We exploit the linearity of the drift operator to decompose the solution u of (1.3) with
A = −∆ in the form u = u1 + u2, where u1 solves the following PDE

du̇1 −∆u1 dt = F (0, 0) dt in (0, T )×O ,
u1(0, ·) = 0 , ∂tu1(0, ·) = 0 in O ,
u1(t, ·) = 0 on ∂O, ∀ t ∈ (0, T ) ,

(A.1)

where “ · ” denotes the time derivative, while u2 solves the SPDE
du̇2 −∆u2 dt = F̂ (u, v) dt+ σ(u, v) dW (t) in (0, T )×O ,
u2(0, ·) = u0 , ∂tu2(0, ·) = v0 in O ,
u2(t, ·) = 0 on ∂O, ∀ t ∈ (0, T ) ,

(A.2)

where F̂ (u, v) := F (u, v)−F (0, 0), and v = ∂tu := ∂tu1 + ∂tu2. The reason for introducing F̂
is to make the drift term has zero trace in (A.2)1. To prove the regularity results, we use the
framework of [8] for (A.1) and we use the Galerkin-based proof for (A.2); see, e.g. [3, Ch. 6].
We need some extra assumptions on F and σ (e.g. (A3)–(A5)) and use different arguments
than [3] as we require improved regularity results.

For the argumentation below to work, for the improved regularity, we assume that σ is zero
on the boundary, but not F . If this is not assumed, then the subproblem (A.1) will have an

extra term
( ∫ t

0 σ(0, 0) dW (s), φ
)

in the right-hand side, and in (A.2), σ(u, v) will be replaced

by σ̂(u, v) := σ(u, v) − σ(0, 0), which is zero on the boundary. In the next step to prove
the higher regularity of the modified (A.1), we need to consider the following transformation,

y(t) = u1(t) −
∫ t
0

∫ s
0 σ(0, 0) dW (r) ds . Now, y solves a randomized PDE with y = h on the

boundary, where h(t) :=
∫ t
0

∫ s
0 σ(0, 0) dW (r) ds . Since h is of class C1, 1

2 with respect to the
time variable, the standard PDE techniques to show the improved regularity may not be
applied. This motivates us to assume that σ is zero on the boundary.

Proof of Lemma 3.2. We first prove the improved regularity results for u1 and use a boot-
strapping argument to prove the improved regularity results for u2.

a) Improved regularity of u1. By [8, Sec. 7.2], there exists a unique solution u1 ∈
C([0, T ];H1

0) and ∂tu1 ∈ C([0, T ];L2) to (A.1). By [8, Sec. 7.2], for m = 1, 2, 3, under
the assumption (A5), we get

(
u1, ∂tu1

)
∈ L∞(0, T ;Hm+1)× L∞(0, T ;Hm), and we have the

following estimate

sup
0≤t≤T

(
‖u1(t)‖qHm+1 + ‖∂tu1(t)‖qHm

)
≤ Cq ‖F (0, 0)‖q

L2(0,T ;Hm)
(q ≥ 2).(A.3)

We will use this result to prove the improved regularity for u2.

b) Improved regularity of u2. By [3, Thm. 8.4], there exists a unique {Ft}t≥0−adapted
process (u2, ∂tu2) ∈ L2

(
Ω;C([0, T ];H1

0)
)
× L2

(
Ω;C([0, T ];L2)

)
, which satisfies (A.2) P−a.s..

The proof uses a Galerkin approximation, with {ρi}∞i=1 the orthonormal basis of L2, composed
of eigenfunctions of −∆. For any n ∈ N, we define the finite dimensional space Hn :=
Span{ρ1, · · · , ρn}, and Pn be the projection from L2 onto Hn. We define ∆n := Pn∆ : Hn →
Hn and use the mappings F̂n(un, vn) := PnF̂ (un, vn) ∈ Hn and σn(un, vn) := Pnσ(un, vn) ∈
Hn for (un, vn) ∈ [Hn]2, such that un = u1n + u2n, where u1n := Pnu1, vn := v1n + v2n :=
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∂tu1n+∂tu2n with u2n(0) = Pnu0 and v2n(0) = Pnv0, where u2n and v2n satisfy the following
approximated system{

du2n = v2n dt

dv2n =
(

∆nu2n + F̂n
(
u1n + u2n, v1n + v2n

))
dt+ σn

(
u1n + u2n, v1n + v2n

)
dW (t) .

(A.4)

By [11], there exists a unique {Ft}t≥0-adapted process (u2n, v2n) on
(
Ω,F , {Ft}t≥0,P

)
such

that for each n ∈ N, (u2n, v2n) ∈ L2
(
Ω;C([0, T ]; [Hn]2)

)
for (Pnu0,Pnv0) ∈ [Hn]2.

1) Bounds: Let ` ∈
{

0, 12 , 1,
3
2

}
, which correspond to the parts (i) − (iv) of Lemma 3.2,

respectively. Define the map Φ` : Hn ×Hn → R, where

Φ`(u, v) :=
1

2

[
‖∆`+ 1

2
n u‖2L2 + ‖∆`

nv‖2L2

]
.

Thus, DuΦ`(u, v), DvΦ`(u, v) ∈ L(Hn,R). For any φ ∈ Hn, we have

DuΦ`(u, v)(φ) =
(
∆
`+ 1

2
n u,∆

`+ 1
2

n φ
)

and DvΦ`(u, v)(φ) =
(
∆`
nv,∆

`
nφ
)
.

Applying Itô’s formula to the process Φ` we obtain

Φ`

(
u2n(t), v2n(t)

)
= Φ`

(
u2n(0), v2n(0)

)
+

∫ t

0

(
∆
`+ 1

2
n u2n(s),∆

`+ 1
2

n v2n(s)
)

ds

+

∫ t

0

(
∆`
nv2n(s),∆`+1

n u2n(s) + ∆`
nF̂n

(
un(s), vn(s)

))
ds

+

∫ t

0

(
∆`
nv2n(s),∆`

nσn
(
un(s), vn(s)

)
dW (s)

)
+

1

2

∫ t

0

∥∥∆`
nσn

(
un(s), vn(s)

)∥∥2
L2 ds ,

(A.5)

where un = u1n+u2n and vn = v1n+v2n. We use different arguments for the cases ` = 0, 12 , 1,
3
2 ,

which represnt the parts (i)− (iv) of Lemma 3.2, respectively.

b1) F ≡ F (u, v) and σ ≡ σ(u, v) for ` = 0. Since Pnσ(un, vn) =
∑n

i=1

(
σ
(
un, vn

)
, ρi
)
ρi,

using (A3), a standard argument gives∥∥σn(un, vn)∥∥2L2 ≤
∥∥σ(un, vn)∥∥2L2 ≤ CL

{
1 + ‖∇un‖2L2 + ‖vn‖2L2

}
≤ CL

{
1 + ‖∇un‖2L2 + ‖vn‖2L2

}
≤ C

{
1 + ‖∆1/2

n un‖2L2 + ‖vn‖2L2

}
.

A similar estimate will hold for ‖F̂n(un, vn)‖2L2 .

b2) F ≡ F (u, v) and σ ≡ σ(u, v) for ` = 1/2. Proceeding similarly as before for ` = 0, and
using (A4) we infer∥∥∆1/2

n σn(un, vn)
∥∥2
L2 =

n∑
j=1

λj

∣∣∣(σ(un, vn), ρj)∣∣∣2 ≤ ∥∥∇σ(un, vn)∥∥2L2

≤ C
{

1 +
∥∥∂uσ(un, vn)(∇un) + ∂vσ

(
un, vn

)
(∇vn)

∥∥2
L2

}
≤ C

{
1 + ‖∆nun‖2L2 + ‖∆1/2

n vn‖2L2

}
.

A similar estimate will hold for
∥∥∆

1/2
n F̂n

(
un, vn

)∥∥2
L2 . The other terms in the right-hand side

of (A.5) can be dealt similarly by the use of Cauchy-Schwarz inequality.



HIGHER ORDER DISCRETIZATION OF THE STOCHASTIC SEMILINEAR WAVE EQUATION 37

Using the above estimates in b1) and b2) (for ` = 0 and 1
2 , respectively) in (A.5) we obtain

Φ`
(
u2n(t), v2n(t)

)
≤ Φ`

(
u2n(0), v2n(0)

)
+ C

∫ t

0

[
1 + ‖∆`

nvn(s)‖2L2 + ‖∆`+ 1
2

n un(s)‖2L2

]
ds

+

∫ t

0

(
∆`
nv2n(s),∆`

nσn
(
un(s), vn(s)

)
dW (s)

)
.

(A.6)

Using the definition of Φ`, raising the power p in both sides of the inequality for some p > 2,
taking the supremum over time and then taking expectation, and using the regularity results
in a), we get

E
[

sup
0≤s≤t

Φp
`

(
u2n(s), v2n(s)

)]
≤ C + 3p−1E

[
Φp
`

(
u2n(0), v2n(0)

)]
+ 3p−1

∫ t

0
E
[

sup
0≤r≤s

Φp
`

(
u2n(r), v2n(r)

)]
dr

+ 3p−1E
[

sup
0≤s≤t

∣∣∣∣ ∫ s

0

(
∆`
nvn(r),∆`

nσn
(
un(r), vn(r)

)
dW (r)

)∣∣∣∣p] .
(A.7)

Using the Burkholder-Davis-Gundy inequality and previous estimates for ` = 0, 12 , and
using the regularity results in a), we obtain

E
[

sup
0≤s≤t

∣∣∣∣ ∫ s

0

(
∆`
nv2n(r),∆`

nσn
(
un(r), vn(r)

)
dW (r)

)∣∣∣∣p]
≤ CE

[(∫ t

0
‖∆`

nv2n(s)‖2L2

∥∥∆`
nσn

(
un(s), vn(s)

)∥∥2
L2 ds

)p/2]
≤ C + CE

[
sup
0≤s≤t

Φp
`

(
u2n(s), v2n(s)

)]
+ C

∫ t

0
E
[

sup
0≤s≤t

Φp
`

(
u2n(s), v2n(s)

)]
ds.

(A.8)

Using (A.8) in (A.7) and using the Gronwall lemma we get for ` = 0, 12 and p ≥ 2,

E
[

sup
0≤s≤t

Φp
`

(
u2n(s), v2n(s)

)]
≤ C E

[
Φp
`

(
u2n(0), v2n(0)

)]
eCT ≤ C E

[
Φp
`

(
u0, v0

)]
eCT .(A.9)

b3) Dealing of cases ` = 1, 32 . We assume (A3) for these two cases. If we treat σ2(v) and
F2(v) as general functions, then the chain rule and the product rule formula of calculus will
lead us to higher order derivative terms with higher moments in v in the right-hand side as
compared to the left-hand side; see (A.10) and (A.11) below for the similar estimates in v.
Then, the Gronwall lemma may not be applied. Thus, F ≡ F (u) and σ ≡ σ(u) are treated
as general functions, but F ≡ F (v) and σ ≡ σ(v) are assumed to be only affine in v.

Case-1: Let us consider the case σ ≡ σ1(u) and F̂ ≡ F1(u), which can be dealt as general
functions. Take ` = 1 in (A.5). Then, using product formula, and chain rule for general
functions and by (A4) for m = 1, 2, we infer

‖∆nσn(un)‖2L2 =

n∑
j=1

λ2j
∣∣(σ(un), ρj

)∣∣2 ≤ ‖∆σ(un)‖2L2 ≤ C̃2
g ‖(∇un)2‖2L2 + Cg‖∆un‖2L2 .(A.10)

Now, using Ladyzhenskaya inequality and Poincaré inequality, we estimate the term

‖(∇un)2‖2L2 ≤ C‖∇un‖2L2‖∆un‖2L2 ≤ C‖∇un‖4L2‖∆un‖2L2 + C‖∆un‖2L2

≤ C‖∇un‖8L2 + C‖∆un‖4L2 + C‖∇∆un‖2L2 .
(A.11)
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Similar estimates will hold for ‖∆nF̂n(un)‖2L2 . Now, we take ` = 3
2 in (A.5). Using the chain

rule, (A4) for m = 1, 2, 3, we infer

‖∆3/2
n σn(un)‖2L2 ≤ ‖∆3/2σ(un)‖2L2 ≤ C̄2

g ‖(∇un)3‖2L2 + C̃2
g ‖∇un∆un‖2L2 + Cg‖∇∆un‖2L2 .(A.12)

Using the Sobolev embeddings we further esimate

‖(∇un)3‖2L2 ≤ C ‖∇un‖6L6 ≤ C ‖∆un‖6L2 ,(A.13)

and

‖∇un∆un‖2L2 ≤ C ‖∇un‖2L4‖∆un‖2L4 ≤ C ‖∇un‖1/2L2 ‖∆un‖
3/2
L2 ‖∆un‖

1/2
L2 ‖∇∆un‖3/2L2

≤ C‖∇un‖2L2 + C‖∆un‖8L2 + C‖∇∆un‖3L2 .
(A.14)

Similar estimates will hold for ‖∆3/2
n F̂n(un)‖2L2 .

Case-2: Let σ ≡ σ2(v) and F̂ ≡ F2(v), such that (A5) holds. For ` = 1 we have

‖∆nσn(vn)‖2L2 =
n∑
j=1

λ2j
∣∣(σ(vn), ρj

)∣∣2 ≤ ‖∆σ(vn)‖2L2 ≤ Cg‖∆vn‖2L2 ,(A.15)

and for ` = 3
2 we have

‖∆3/2
n σn(vn)‖2L2 ≤ ‖∆3/2σ(vn)‖2L2 ≤ Cg‖∇∆vn‖2L2 .(A.16)

Similar estimates will hold for ‖∆3/2
n F̂n(vn)‖2L2 .

Using the estimates (A.10), (A.14), (A.15), and (A.16) in (A.5) for ` = 1, 32 , and using
the regularity results proved so far for u1n and u2n and their time derivatives, we get (A.7)
for ` = 1, 32 . Finally, the use of Burkholder-Davis-Gundy inequality yields the assertion for

` = 1, 32 .

2) Convergence: By step 1), for p ≥ 2

(u2n, v2n)n ⊂ Lp
(
Ω;L∞(0, T ;H2`+1 ×H2`)

)
∩ Lp

(
Ω;L2(0, T ;H2`+1 ×H2`)

)
is bounded for ` = 0, 12 , 1,

3
2 . Here, we need to argue the convergence case by case. First,

consider ` = 0. Then, there exist subsequences (u2n′)n′ and (v2n′)n′ , which converge weakly
to u′2 and v′2, respectively. Then, using standard arguments (see [3]) shows that (u′2, v

′
2) is a

weak solution of (A.2). By the uniqueness of the weak solution, we have (u′2, v
′
2) = (u, v). By

Fatou’s lemma, passing to the limit in (A.9) yields

E
[

sup
0≤s≤t

Φp
`

(
u2(s), v2(s)

)]
≤ CE

[
Φp
`

(
u0, v0

)]
eCT ,(A.17)

for ` = 0. Now, consider ` = 1
2 . Then, there exist subsequences (u2n′′)n′′ and (v2n′′)n′′ which

converge weakly to some ũ2 and ṽ2, respectively. By using the standard arguments and the
uniqueness of the solution of the system (A.2), we claim that (ũ2, ṽ2) = (∇u2,∇v2). Thus,
by passing to the limit (A.17) holds for ` = 1/2. Similar arguments will yield the result for
` = 1, 32 . Combining (A.17) with (A.3) we get the assertions in Lemma 3.2. �
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Appendix B. Proof of Hölder continuity in time

The proof of Lemma 3.3 uses the regularity results for the variational solution of (3.1)–(3.2)
in Lemma 3.2. We obtain a Hölder regularity in time for u which is double the one for v: the
reason for it is the occurrence of the Itô integral in (3.2), but not in (3.1).

Proof of Lemma 3.3. Proof of (i). Let r, s ∈ [0, T ], and fix p ∈ N. By Lemma 3.2 (i), we
have v ∈ L2

(
Ω;L∞(0, T ;L2)

)
. Therefore,

∫ r
s v(ξ)dξ is well-defined for a.e. x ∈ O and P-a.s..

Thus, we can write the weak formulation (3.1) in strong form P-a.s. as

u(r)− u(s) =

∫ r

s
v(ξ)dξ, for a.e. x ∈ O, for r, s ∈ [0, T ] .

Then, the Hölder inequality yields

‖u(r)− u(s)‖2pL2 ≤
(∫ r

s
‖v(ξ)‖L2 dξ

)2p
≤ |r − s|2p−1

∫ r

s
‖v(ξ)‖2pL2 dξ .

We fix s, t ∈ [0, T ], and take supremum w.r.t. r, and then take expectation to get

E
[

sup
s≤r≤t

‖u(r)− u(s)‖2pL2

]
≤ |t− s|2p−1 E

[ ∫ t

s
‖v(ξ)‖2pL2 dξ

]
≤ |t− s|2p E

[
sup

0≤t≤T
‖v(t)‖2pL2

]
.

Hence, (i) holds by applying (3.3) in Lemma 3.2.

Proof of (ii). Let r, s ∈ [0, T ], and fix p ∈ N. The first part follows as (i). By Lemma 3.2 (ii),
we have u ∈ L2

(
Ω;L∞(0, T ;H2)

)
. Therefore,

∫ r
s ∆u(ξ) dξ is well-defined for a.e. x ∈ O and

P-a.s.. By Lemma 3.2 (i), we have (u, v) ∈ L2
(
Ω;L∞(0, T ;H2 × H1)

)
. Therefore, by (A3),∫ r

s F
(
u(ξ), v(ξ)

)
dξ is well-defined for a.e. x ∈ O for s, r ∈ [0, T ] and P-a.s.. Similarly, by

(A3) and Itô isometry,
∫ r
s σ
(
u(ξ), v(ξ)

)
dW (ξ) is well-defined for a.e. x ∈ O for s, r ∈ [0, T ]

and P-a.s.. Now, from the weak formulation (3.2) and using the above conclusion, we may
rewrite the equation in the strong form as (see [8, Section 6.3, Remark (ii)])

v(r)− v(s) =

∫ r

s
∆u(ξ)dξ +

∫ r

s
F
(
u(ξ), v(ξ)

)
dξ +

∫ r

s
σ
(
u(ξ), v(ξ)

)
dW (ξ).(B.1)

By Hölder inequality, we estimate

‖v(r)− v(s)‖2L2 ≤ C(r − s)
∫ r

s
‖∆u(ξ)‖2L2 dξ + C(r − s)

∫ r

s
‖F
(
u(ξ), v(ξ)

)
‖2L2 dξ

+ C

∫
O

(∫ r

s
σ
(
u(ξ), v(ξ)

)
dW (ξ)

)2
dx .

(B.2)

We fix s, t ∈ [0, T ], and take supremum w.r.t. r, then take expectation. Using (A3), Itô
isometry, Lemma 3.2 (i) and (ii), we infer

E
[

sup
s≤r≤t

‖v(r)− v(s)‖2L2

]
≤ CE

[
sup

0≤t≤T
‖∆u(t)‖2L2

]
(t− s)2 + C(t− s)2 + CE

[
sup

0≤t≤T
‖∇u(t)‖2L2

]
(t− s)2

+ CE
[

sup
0≤t≤T

‖v(t)‖2L2

]
(t− s)2 + CE

[ ∫ t

s

(
1 + ‖∇u(ξ)‖2L2 + ‖v(ξ)‖2L2

)]
≤ C(t− s) .

Proof of (iii). Let r, s ∈ [0, T ], and fix p ∈ N. The first part follows as (i). In order to verify
the bound for E

[
sups≤r≤t ‖∇[v(r) − v(s)]‖2L2

]
, consider the equation (B.1). By Lemma 3.2,

we have (u, v) ∈ L2p
(
Ω;L∞(0, T ;H4×H3)

)
. Thus, by (A3), (A4), we can take the gradients
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in (B.1), since it is a closed operator on H1. Then, the terms are well-defined. Proceeding
similarly as part (ii) we get

E
[

sup
s≤r≤t

‖∇[v(r)− v(s)]‖2L2

]
≤ CE

[ ∫ t

s

‖∇∆u(ξ)‖2L2 dξ
]
(t− s) + CE

[ ∫ t

s

∥∥∇F (u(ξ), v(ξ)
)∥∥2

L2 dξ
]
(t− s)

+ CE
[ ∫ t

s

∥∥∇σ(u(ξ), v(ξ)
)∥∥2

L2 dξ
]
.

By (A4),
∥∥∇σ(u(ξ), v(ξ)

)∥∥2
L2 ≤ C2

g

(
‖∇u(ξ)‖2L2 + ‖∇v(ξ)‖2L2

)
. Then, using Lemma 3.2 (i),

(ii) and (iii), we further estimate

≤ C(t− s)2 + CE
[ ∫ t

s

(
‖∇u(ξ)‖2L2 + ‖∇v(ξ)‖2L2

)]
≤ C(t− s).

Proof of (iv). Let r, s ∈ [0, T ], and fix p ∈ N. The first part follows as (i). To verify the
bound for E

[
sups≤r≤t ‖∆[v(r) − v(s)]‖2L2

]
, consider (B.1). Argue similarly as part (ii) to

apply the Laplacian to (B.1) due to (A3), (A4), and proceed similarly to obtain

E
[

sup
s≤r≤t

‖∆[v(r)− v(s)]‖2L2

]
≤ CE

[ ∫ t

s

‖∆2u(ξ)‖2L2 dξ
]
(t− s) + CE

[ ∫ t

s

∥∥∆F
(
u(ξ), v(ξ)

)∥∥2
L2 dξ

]
(t− s)

+ CE
[ ∫ t

s

∥∥∆σ
(
u(ξ), v(ξ)

)∥∥2
L2 dξ

]
.

To bound the last two terms requires (A3) to e.g. write σ
(
u(ξ), v(ξ)

)
= σ1

(
u(ξ)

)
+σ2

(
v(ξ)

)
,

where σ2 is affine in v. Then, ∆σ
(
u(ξ), v(ξ)

)
= ∆σ1

(
u(ξ)

)
and we can follow the steps of

(A.10)-(A.14) to bound it. Similar techniques may be used to deal with ‖∆F
(
u(ξ), v(ξ)

)
‖2L2 .

Lemma 3.2 then settles the assertion. Thus, the proof is complete. �
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