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8. Exercise sheet for Numerik für Differentialgleichungen auf Oberflächen

Exercise 19. Assume that the surface and its evolution is sufficiently smooth. Prove the following
geometric estimates:

‖d‖L∞(Γh(t)) ≤ ch2, ‖1− δh‖L∞(Γh(t)) ≤ ch2,

‖ν− νh‖L∞(Γh(t)) ≤ ch, and

‖(∂•h)(`)d‖L∞(Γh(t)) ≤ ch2, ‖(∂•h)(`)δh‖L∞(Γh(t)) ≤ ch2.

Hint. For the last estimate use the formula

δh(x) = ν(x) · νh(x)
m

∏
j=1

(1− d(x, t)Kj(x)) (x ∈ Γh(t)),

where Kj(x) = κj(y(x,t))
1+d(x,t)κj(y(x,t)) with κj being the principle curvatures.

∗∗ You can try to prove this expression.

Exercise 20. Consider the lifted material points

y(t) = y(x(t), t) ∈ Γ(t),

with x(t) ∈ Γh(t), for 0 ≤ t ≤ T.

The velocity of the lifted material points is, counter-intuitively, not the lift of the discrete velocity
Vh. Derive an expression for this material velocity, denoted by vh, which gives the ODE for the
material points:

d
dt

y(t) = vh(y(t), t)

y(0) = y0 ∈ Γ0.

Hint. Use the definition of the lift:

y(t) = x(t)− ν(y(t), t)d(x, t).

Exercise *. Let 1 ≤ k ≤ 5, and consider the values

un−1, un−2, . . . , un−k

be given, and which approximate u(tn−j), on equidistant steps with τ > 0. Find an approximation
to the unknown

u(tn).

Hint. Try the special cases k = 1 and/or k = 2.



Programming exercise 3. Consider the parabolic problem on the evolving surface Γ(t), with
velocity v given by func v.m (bouncing–ellipsoid example),

∂•u + u∇Γ(t) · v− ∆Γ(t)u = f on Γ(t) for [0, T],

u(·, 0) = u0 on Γ0 = {|x| = 1}.

(a) Assume that the exact solution is given to be, with x = (x1, x2, x3),

u(x, t) = e−6tx1x2.

The functions func sol.m and func f.m are given.

(b) Approximate the above problem using surface finite elements as a space discretisations, combi-
ned with a k-step BDF method.

To assemble the mass and stiffness matrices use the already implemented function
[A,M]=surface assembly(Elements,Nodes) from PA1.

Evolve the discrete surface as discussed in A17.

(c) Use the 3-step BDF method to solve the corresponding fully discretised until with T = 1. Using
all meshes from PA1

Sphere elements j.txt

Sphere nodes j.txt
j = 0, . . . , 5,

and all the time step sizes τ = 0.2, 0.1, 0.05, 0.025, 0.0125.

Compute the following errors of the numerical solution, when compared to the exact solution (gi-
ven by func sol.m from above).

As an output generate two convergence plots∗ using the errors measured in the L2 norm and the
H1 semi-norm at step N (with Nτ = 1):

‖(uN
h )

` − u(·, T)‖2
L2(Γ(T)) ≈ ‖e

N‖2
M = (eN)T MeN ,

‖∇((uN
h )

` − u(·, T))‖2
L2(Γ(T)) ≈ ‖e

N‖2
A = (eN)T AeN .

• In the first figure plot the error curves for each mesh against the step size.

• In the second figure plot the error curves for each time step size against the mesh width.

∗ As discussed before. Also see the example files!

Bonus: Explain the behaviour of the convergence plots. Does the ”flatting out” of the curves con-
tradict the convergence theory?

Bonus: Do the same using an implicit Runge–Kutta methods (Radau IIA s = 2).

The functions and the grid arrays can be found at https://na.uni-tuebingen.de/ex/surfPDE_
ss18/PA3.zip.

Discussed on the tutorials on 03.07.2018. The programming exercise is due on 11.07.2018, 12 s.t.
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