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6. Exercise sheet for Numerik für Differentialgleichungen auf Oberflächen

Exercise 12. Let the evolving surface Γ(t) be given by the following distance function

d(x, t) =
x2

1
a(t)

+ x2
2 + x2

3 − 12,

where a(t) = 1 + sin(2πt)/4.

(a) Compute the normal vector νΓ(t) and the normal velocity v.

(b) What is the evolution of the surface over the time interval [0, 1]?

(c) How would you visualise this evolving surface? Write a simple pseudo-code.

Exercise 13. Prove the first Leibniz formula from below. Let u be a function (such that all the
following quantities exist), then the following equalities hold

d
dt

∫
Γ(t)

u =
∫

Γ(t)
∂•u +

∫
Γ(t)

u(∇Γ(t) · v)

1
2

d
dt

∫
Γ(t)
|∇Γ(t)u|2 =

∫
Γ(t)
∇Γ(t)u · ∇Γ(t)∂

•u +
1
2

∫
Γ(t)
|∇Γ(t)u|2(∇Γ(t) · v)−

∫
Γ(t)
D(v)∇Γ(t)u · ∇Γ(t)u,

where D(v) = 1
2

(
∇Γ(t)v + (∇Γ(t)v)T).

Hint. Recall the following definitions and facts. Let X(·, t) : Ω → Γ(t) be a parametrisation from
Ω ⊂ R2 (note that Ω 6= Γ0), of the surface Γ(t) evolving according to the ODE ∂tX(ϑ, t) =
v(X(ϑ, t), t). The Riemannian metric and related quantities are

gij = ∂ϑi X · ∂ϑj X, g = det(gij), gij = (gij)
−1.

For a function u(·, t) : Γ(t) → R we define U(ϑ, t) = u(X(ϑ, t), t). Tangential gradient and diver-
gence are given by

(∇Γu)(X(ϑ)) = ∑
i,j

gij∂ϑi X∂ϑjU and (∇Γ · v)(X(ϑ)) = ∑
i,j

gij∂ϑi X · ∂ϑj V.

An integral over a Riemmanian manifold is defined by∫
Γ(t)

u =
∫

Ω
U(ϑ, t)

√
gdϑ.

The determinant satisfies the Euler relation

∂t
√

g =
√

g ∑
i,j

gij∂ϑi X · ∂ϑj V.



Exercise 14. For a weak solution u, with initial value u0 ∈ H1(Γ0) and f = 0, the energy equations
hold:

1
2

d
dt

∫
Γ(t)
|u|2 +

∫
Γ(t)
|∇Γ(t)u|2 = −1

2

∫
Γ(t)
|u|2(∇Γ(t) · v)∫

Γ(t)
|∂•u|2 + 1

2
d
dt

∫
Γ(t)
|∇Γ(t)u|2 =

1
2

∫
Γ(t)
|∇Γ(t)u|2(∇Γ(t) · v)−

∫
Γ(t)
D(v)∇Γ(t)u ·∇Γ(t)u−

∫
Γ(t)

u∂•u(∇Γ(t) · v),

with D(v) = 1
2

(
∇Γ(t)v + (∇Γ(t)v)T).

Prove the first energy equation using the weak formulation and the Leibniz formula. (Try the se-
cond one as an extra exercise, if you like.)

Exercise 15. Prove that for a weak solution u, with initial value u0 ∈ H1(Γ0) and f = 0, the a priori
estimates also hold, for t0 ∈ [0, T],

(a) sup
t∈(0,t0)

‖u(·, t)‖2
L2(Γ(t)) +

∫ t0

0
‖∇Γ(t)u(·, t)‖2

L2(Γ(t))dt ≤ c‖u0‖2
L2(Γ0),

(b)
∫ t0

0
‖∂•u(·, t)‖2

L2(Γ(t))dt + sup
t∈(0,t0)

‖∇Γ(t)u(·, t)‖2
L2(Γ(t)) ≤ c‖u0‖2

H1(Γ0).

Hint. Use the energy equations, then estimate the right-hand sides, and use Gronwall’s inequality.



Programming exercise 2. Consider the parabolic problem on Γ the sphere of unit radius:

∂tu− ∆Γu = f on Γ for [0, 1],

u(·, 0) = u0 on Γ.

(a) Assume that the exact solution is given to be, with x = (x1, x2, x3),

u(x, t) = e−tx1x2.

Compute the right-hand side function corresponding to the PDE. Create the functions func sol.m

and func f.m with them. (Use vector operations!)

(b) Approximate the above problem using surface finite elements as a space discretisations, combi-
ned with efficient time integrators (given below).

To assemble the mass and stiffness matrices use the already implemented function
[A,M]=surface assembly(Elements,Nodes) from PA1.

Implement the time discretisations:

• general Runge–Kutta methods (given by its Butcher tableau in Butcher tableau.m);

• and BDF methods of order k ≤ 5 (given by its coefficients in BDF tableau.m).

Use the exercises 10 and 11. As initial data use the (SFEM) interpolation of the exact solution.

(c) Use the 3 stage Radau IIA method and the 3-step BDF method to solve the corresponding fully
discretised problem over the time interval [0, 1]. Using all meshes from PA1

Sphere elements j.txt

Sphere nodes j.txt
j = 0, . . . , 5,

and all the time step sizes τ = 0.2, 0.1, 0.05, 0.025, 0.0125.

Compute the following errors of the numerical solution, when compared to the exact solution given
by func sol.m from above.

As an output generate two convergence plots∗ using the errors measured in the L2 norm and the
H1 semi-norm at step N (with Nτ = 1):

‖(uN
h )

` − u(tN)‖2
L2(Γ) ≈ ‖e

N‖2
M = (eN)T MeN ,

‖∇((uN
h )

` − u(tN))‖2
L2(Γ) ≈ ‖e

N‖2
A = (eN)T AeN .

• In the first figure plot the error curves for each mesh against the step size.

• In the second figure plot the error curves for each time step size against the mesh width.

∗ As discussed before. Also see the example files (for second order finite elements)!

Bonus question: Explain the behaviour of the convergence plots. Does the ”flatting out” of the
curves contradict the convergence theory?

The functions and the grid arrays can be found at https://na.uni-tuebingen.de/ex/surfPDE_
ss18/PA2.zip.

Discussed on the tutorials on 12.06.2018. The programming exercise is due on 19.06.2018, 12 s.t.
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