Universität Tübingen Mathematisches Institut Dr. Balázs Kovács

5. Exercise sheet for Numerik für Differentialgleichungen auf Oberflächen

Exercise 9. (a) Collect the some of the most important properties of the Radau IIA methods for stage number $s \in \mathbb{N}$.

Hint: Butcher tableau, order, stability function, various stability properties, etc.

(b) Collect the most important properties of the *k*-step BDF methods ($k \in \mathbb{N}$).

Hint: Coefficients, order, stability regions, various stability properties, etc.

Any sources, with correct references, are allowed to be used.

Exercise 10. Formulate the block-matrix form of a general Runge–Kutta method (with a given Butcher tableau) from the lecture (when it was applied to the heat equation on stationary surfaces). (Collect the internal stages U^{ni} into a vector, formulate the corresponding linear equation system. Use Kronecker products \otimes .)

Write a simple pseudo-code for the fully discrete numerical solution.

Exercise 11. Reformulate the *k*-step BDF method (for $k \le 6$) from the lecture (when it was applied to the heat equation on stationary surfaces) as

$$\mathbf{L}\mathbf{u}^n = \boldsymbol{\varrho}^n \qquad (n \ge k).$$

In particular, determine the matrix **L** and the vector $\boldsymbol{\varrho}^n$ (both can depend on the coefficients of the method, and $\boldsymbol{\varrho}^n$ may also depend on the past values of \mathbf{u}^j).

Write a simple pseudo-code for the fully discrete numerical solution.