Exercise 5. (a) Determine the first order local basis functions on the reference triangle (reference element) E_0 , given by (0,0), (1,0) and (0,1) as its nodes.

(b) Compute the corresponding local matrices:

Dr. Balázs Kovács

$$\int_{E_0} \phi_i \phi_j, \quad \int_{E_0} \partial_x \phi_i \partial_x \phi_j, \quad \int_{E_0} \partial_x \phi_i \partial_y \phi_j, \quad \int_{E_0} \partial_y \phi_i \partial_x \phi_j, \quad \int_{E_0} \partial_y \phi_i \partial_y \phi_j \qquad i, j = 1, 2, 3.$$

Hint: Use symbolic calculations in Matlab or Maple/Sage, instead of computing by hand.

Exercise 6. Determine the affine linear transformation between the reference element E_0 and an arbitrary triangle $E \subset \mathbb{R}^3$. What is the inverse transformation?

Hint: Notice that the reference element can be considered to be in \mathbb{R}^3 (with $(\cdot, \cdot, 0)$). If needed, the normal vector can be used as well.

Exercise 7. With the help of the above affine map from E to E_0 , transform the following integrals onto E_0 :

$$\int_E \phi_i \phi_j, \qquad \int_E \nabla_E \phi_i \cdot \nabla_E \phi_j.$$

Hint: Use integral transformation.