Exercise sheet no. 11 - Numerics for instationary differential equations

Note:

This exercise sheet is only voluntary. We will discuss most of the solutions in the exercise class. Additionally there will be a question hour, so please send any questions regarding the lecture in advance to your tutor.

Exercise 28:

Show that the Lax Wendroff method

$$\frac{u_j^{n+1} - u_j^n}{\tau} = c \frac{u_{j+1}^n - u_{j-1}^n}{2h} + \frac{c^2 \tau}{2} \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{n^2}$$

with the numerical boundary condition

$$\frac{u_0^{n+1} - u_0^{n-1}}{2\tau} = c \frac{u_1^n - u_0^n}{h}$$

is instable.

Exercise 29:

Show that the Leapfrog-method

$$\frac{u_j^{n+1} - u_j^{n-1}}{2\tau} = c \frac{u_{j+1}^n - u_{j-1}^n}{2h}$$

together with the boundary condition

$$\frac{u_0^{n+1} - u_0^n}{\tau} = c \frac{u_1^n - u_0^n}{h}$$

is stable. For this, consider the associated symbols

$$a(z,\xi) = z - z^{-1} - r(\xi - \xi^{-1}),$$

$$b(z,\xi) = z - 1 - r(\xi - 1)$$

(where $r = c\tau/h$) is the Courant number) and proceed the following:

- (a) For |z| > 1, there exists exactly one zero $\xi_1(z)$ of $a(z,\xi) = 0$ with absolute value smaller than 1 and this zero satisfies $\lim_{z\to 1} \xi_1(z) = -1$. <u>Hint:</u> Show that for real $z \in (1,\infty)$, there is one zero $\xi_1(z) \in (0,1)$ and one zero $\xi_2(z) \in (1,\infty)$. Then, consider $z = e^{\alpha} e^{i\varphi}$.
- (b) The expansion

$$\frac{1}{b(z,\xi_1(z))} = \sum_{n=0}^{\infty} b_n z^{-n}, \quad |z| > 1$$

has a bounded coefficient sequence (b_n) .

<u>Hint</u>: Show, that $b(z,\xi_1(z)) \neq 0$ for |z| > 1. Then, compute the Laurent series of $\frac{1}{b(z,\xi_1(z))}$, whose non-principal part vanishes. The method is therefore stable.

Solutions are discussed on 24.07.2024.

Contact person: Dominik Sulz - dominik.sulz@uni-tuebingen.de. Open door policy - just come to my office if you have any questions!