Exercise sheet no. 7 - Numerics for instationary differential equations

Exercise 20:

Let V be a separable Hilbert space with norm $\|\cdot\|$ and corresponding inner product (\cdot, \cdot).
Prove: For a sequence of Fourier coefficients $\left\{u_{n}\right\}_{n} \subset V$ defined by

$$
u_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \varphi} \widehat{u}(\varphi) d \varphi, \quad \widehat{u}(\varphi)=\sum_{n=0}^{\infty} u_{n} e^{i n \varphi}
$$

Parseval's theorem holds:

$$
\sum_{n=0}^{\infty}\left\|u_{n}\right\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\|\widehat{u}(\varphi)\|^{2} d \varphi
$$

Exercise 21: (Adaptive step sizes for Runge-Kutta-Methods)
For adaptive step sizes one uses embedded methods of the form

$$
\widehat{y}_{1}=y_{0}+h\left(\widehat{b}_{0} f\left(t_{0}, y_{0}\right)+\sum_{j=1}^{s} \widehat{b}_{j} Y_{j}^{\prime}\right)=y_{0}+\left(h \widehat{b}_{0} f\left(t_{0}, y_{0}\right)+\sum_{j=1}^{s} \widehat{d}_{j} Z_{j}\right)
$$

with the same nodes c_{i} but of lower order (for Radau: order s). Hence, we have

$$
\widehat{y}_{1}-y_{1}=h \widehat{b}_{0} f\left(t_{0}, y_{0}\right)+\sum_{j=1}^{s} h\left(\widehat{b}_{j}-b_{j}\right) Y_{j}^{\prime}=\left(h \widehat{b}_{0} f\left(t_{0}, y_{0}\right)+\sum_{j=1}^{s}\left(\widehat{d}_{j}-d_{j}\right) Z_{j}\right)
$$

where $Z_{j}=Y_{j}-y_{0}$ and $d=b^{\top} A^{-1}$.
(a) Make clear: With adequate choice of \hat{d}_{j} the error err $:=\widehat{y}_{1}-y_{1}$ fulfills

$$
\|e r r\|=C h^{s+1}+O\left(h^{s+2}\right)
$$

(b) Applying this error bound to the test equation $y^{\prime}=\lambda y, y(0)=y_{0}$, for $h \lambda \rightarrow \infty$, the error bound behaves like $\widehat{b}_{0} h \lambda y_{0}$ (why?) and therefor is not useful for stiff differential equations. If one uses

$$
\begin{equation*}
e r r:=\left(I-h \widehat{b}_{0} J\right)^{-1}\left(\widehat{y}_{1}-y_{1}\right) \tag{1}
\end{equation*}
$$

then $\mathrm{err} \rightarrow-y_{0}$ for $h \lambda \rightarrow \infty$, where $J=\lambda I$ is the Jacobi matrix of the test equation. In the first and every rejected step $(\|e r r\|>1)$ we set

$$
\widehat{e r r}:=\left(I-h \widehat{b}_{0} J\right)^{-1}\left(h \widehat{b}_{0} f\left(t_{0}, y_{0}+e r r\right)+\sum_{j=1}^{s}\left(\widehat{d}_{j}-d_{j}\right) Z_{j}\right)
$$

With this we get $\widehat{e r r} \rightarrow 0$ for $h \lambda \rightarrow \infty$ as for the numerical solution. Show these statements.
(c) How to regulate the step size? For the error (1) in the nth step, (so at time t_{n+1}) it holds $\left\|e r r_{n+1}\right\|=C_{n} h_{n}^{s+1}$ (why?). Under the sometimes unrealistic assumption $C_{n+1} \approx C_{n}$ we obtain under an estimate for $e r r_{n+1}$ and the request that $\left\|e r r_{n+1}\right\| \approx 1$ the step size for the next step as

$$
\begin{equation*}
h_{\text {new }}:=f a c \cdot h_{\text {old }}\left\|e r r_{n+1}\right\|^{-1 /(s+1)} \tag{2}
\end{equation*}
$$

with the same weighted norm

$$
\left\|e r r_{n+1}\right\|=\sqrt{\frac{1}{d} \sum_{i=1}^{d}\left(\frac{e r r_{n+1, i}}{s c_{i}}\right)^{2}}, \quad s c_{i}=\operatorname{Atol}_{i}+\max \left\{\left|y_{n, i}\right|,\left|y_{n+1, i}\right|\right\} \text { Rtol }_{i} .
$$

and a factor $f a c$ which is dependent on the maximal number of Newton steps $k_{\max }$ and the number of made Newton iterations Newt in the current Runge Kutta step. It is given by

$$
f a c=0.9 \cdot \frac{2 k_{\max }+1}{2 k_{\max }+N e w t}
$$

Here, Atol $_{i}$ and Rtol $_{i}$ are tolerances for the absolute and relative error.
In the case $h_{\text {new }}<f a c \cdot h_{\text {old }}$ it follows $\left\|e r r_{n+1}\right\|>1$ (why?), i.e. a step size reduction of more than $f a c$ is not possible without rejection of the step.
(d) A realistic assumption is $C_{n+1} / C_{n} \approx C_{n} / C_{n-1}$. Show that from $C_{n+1} h_{n e w}^{s+1}=1$ it follows for the new step size

$$
\begin{equation*}
h_{\text {new }}:=f a c \cdot h_{n}\left(\frac{1}{\left\|e r r_{n+1}\right\|}\right)^{1 /(s+1)} \cdot \frac{h_{n}}{h_{n-1}}\left(\frac{\left\|e r_{n}\right\|}{\left\|e r r_{n+1}\right\|}\right)^{1 /(s+1)} . \tag{3}
\end{equation*}
$$

A possible step size strategy lies for example in the choice of the minimum from (2) and (4).

Solutions are discussed on 19.06.2024.
Contact person: Dominik Sulz - dominik.sulz@uni-tuebingen.de. Open door policy - just come to my office if you have any questions!

