Exercise sheet no. 5 – Numerics for instationary differential equations

Exercise 13:

Show: If the bilinear form in the weak formulation of a initial boundary value problem satisfies just the Gårding inequality (see previous exercise) instead of being V-elliptic, all existence and uniqueness properties of the lecture are still true. The estimates for the solution still hold, with a factor e^{ct} on the right-hand side.

<u>Hint</u>: Formulate an equivalent problem for $w(x,t) = e^{-ct}u(x,t)$ and consider the corresponding weak formulation.

Exercise 14:

Show (with assumptions from the lecture): the solution $u(t) \in V$ of the homogeneous parabolic initial boundary value problem u' + Au = 0 in V', $u(0+) = u_0$ in H, satisfies for all t > 0

$$Au(t) \in H$$
 and $|Au(t)| \le \frac{C_1}{t}|u_0|$

and thus

$$\|u(t)\| \le \frac{C_2}{\sqrt{t}} |u_0|$$

where the constants C_1, C_2 are independent of t and u_0 .

Exercise 15:

Consider the Gelfand triple

$$V \stackrel{\iota}{\hookrightarrow} H \stackrel{r_H}{\cong} H' \stackrel{\iota'}{\hookrightarrow} V'$$

with Hilbert spaces $(V, \|\cdot\|)$, $(H, |\cdot|)$ and $(V', \|\cdot\|_{V'})$. Here ι is a dense continuous embedding and r_H the Riesz isomorphism. Derive ι' and show that it is also a dense continuous embedding.

Exercise 16:

Show that, under the assumptions of exercise 14

$$|u^{(k)}(t)| \le \frac{C_k}{t^k} |u_0|, \quad \text{for } t > 0 \text{ and } k \ge 1.$$

Solutions are discussed on 05.06.2024.

Contact person: Dominik Sulz - dominik.sulz@uni-tuebingen.de. Open door policy - just come to my office if you have any questions!