Exercise sheet no. 4 – Numerics for instationary differential equations

Exercise 10:

Consider the parabolic differential equation

$$\frac{\partial u}{\partial t} = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} \right) - a_0(x) u \qquad \text{in } \Omega \times (0,T)$$
$$u = 0 \qquad \text{on } \Gamma \times (0,T)$$
$$u = u_0 \qquad \text{in } \Omega \times \{0\},$$

where Ω is a given bounded domain in \mathbb{R}^d with piecewise continuously differentiable boundary Γ . The coefficient functions $a_{ij}, a_0 : \overline{\Omega} \to \mathbb{R}$ are continuous and satisfy,

 $\exists \alpha_0 \ge 0 : \forall x \in \Omega : a_0(x) > \alpha_0,$

and the matrices $(a_{ij}(x))_{ij}$ are symmetric and on Ω uniformly positive definite, that is

$$\exists \alpha_1 > 0 : \forall \xi \in \mathbb{R}^d, \forall x \in \Omega : \sum_{i,j=1}^d \xi_i \xi_j a_{ij}(x) \ge \alpha_1 \xi^T \xi.$$

Derive the weak formulation of the problem and prove that classical solutions are also weak solutions.

Exercise 11:

Let $A \in \mathbb{C}^{N \times N}$. Show: If the eigenvalues of A are inside a circle Γ , then

$$e^{-tA} = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\lambda I + A)^{-1} d\lambda.$$

<u>Hint</u>: Use the Jordan normal form and the fact that each Jordan block is of the form $J = \mu I + N$, where N is nilpotent. You might also need a Neumann series.

Exercise 12:

Consider the heat equation $\partial u/\partial t = \Delta u$ in $\Omega \times (0,T)$ with homogeneous Neumann boundary conditions $\partial u/\partial n = 0$ on $\Gamma \times (0,T)$ and initial value $u(\cdot,0) = u_0$.

- (a) Derive the weak formulation. What is the space V and the corresponding bilinear form a on V? Is a V-elliptic?
- (b) Show the Gårding inequality

$$a(v,v) \ge \alpha ||v||^2 - c|v|^2$$
, for all $v \in V$,

with $\alpha > 0$, $c \ge 0$. Here $\|\cdot\|$ is the norm of V and $|\cdot|$ the norm of $H = L^2(\Omega)$. Which values of α and c do you get?

Solutions are discussed on 17.05.2024.

Contact person: Dominik Sulz - dominik.sulz@uni-tuebingen.de. Open door policy - just come to my office if you have any questions!