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4th Exercise sheet – Numerics for instationary differential equations

Exercise 10: (Reformulation of the nonlinear equation systems in RKM)

In order to reduce the influence of rounding errors, one defines Zi = Yi − y0. Show:

Z = Y − 1⊗ y0 = τ(A⊗ I)F (Y ),

y1 = y0 + (dT ⊗ I)Z,

where dT = bTA−1, with the usual notations of the lecture. Formulate the simplified Newton method.

Show that d = es in the case of Radau methods and thus y1 = y0 + Zs.

Exercise 11: (Stopping criteria for the Newton iteration, evaluation of the Jacobian)

(a) The simplified Newton method usually converges linearly: ‖∆Z(k+1)‖ ≤ θ‖∆Z(k)‖ with a θ,
that hopefully satisfies θ < 1. Show that in this case, the error after the (k+1)-th step satisfies

‖Z(k+1) − Z‖ ≤ θ

1− θ
‖∆Z(k)‖ .

Hint: telescope sum for Zk+1 − Zk+1+j .

(b) One can estimate θ by θk = ‖∆Z(k)‖/‖∆Z(k−1)‖. Since the iteration error should not be
greater than the local error, which should be ≈ tol, one stops the Newton iteration, if

ηk‖∆Z(k)‖ ≤ κtol, ηk =
θk

1− θk
.

This strategy can only be applied after at least two iterations. In order to make it possible to
stop after the first iteration already, one uses η0 = max{ηold, eps}, where eps is the machine
accuracy. A good choice for is κ ∈ [0.01, 0.1] (resulting from numerical tests).

To improve efficiency, we limit the number of Newton iterations to kmax ∈ {7, 8, 9, 10}. During
these kmax steps, the computation is canceled and the step size τ is decreased (e. g. to τ/2),
if there exists a k with θk ≥ 1 (divergence), or if

θkmax−k
k

1− θk
‖∆Z(k)‖ > κ · tol.

Think about why the left-hand side of this expression is a coarse estimate for the error after
kmax iterations.

If convergence occurs after one step or if the last θk is very small, e. g. θk < 10−3, then you
don’t compute a new Jacobian in the next step but continue using the current one.



Programming exercise 2 :

Implement the Radau5-method (Radau IIA of order 5) with constant step size in MATLAB. The
Radau IIA method is given by the Butcher tableau
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Realize the reformulation of the Newton method of exercise 10 and the stopping criteria of exercise
11.

The programm should display an error, if divergence occurs or if convergence after kmax iterations
cannot be ensured.

Test your program by solving the van der Pol equation

y′1 = y2

εy′2 = (1− y21)y2 − y1

with initial value y1(0) = 2, y2(0) = −0.6 for different values of von ε and τ . Integrate until t = 2
and plot for ε = 5 · 10−4 and τ = 10−4 the approximation to y1.

Hint: You can proceed like this:

• Implement a function

vanderPol_rhs(epsilon,y)

and

jacobian(epsilon,y)

to compute the right-hand side f of the van der Pol-system y′ = f(ε, y) and to compute the
corresponding Jacobian matrix, where y = (y1, y2)

T . Use these functions to compute the right-
hand side of the equation system in each Newton iteration and to compute the matrix of the
simplified Newton method in each Radau step according to exercise 10.

• A Radau step t −→ t+ τ can be realized with a function

[y_new, eta_new, h] = radau_step(epsilon,J,A,h,t,TOL,y_old,eta_old)

where J is the Jacobian, A the coefficient matrix of the RKM, TOL the tolerance in the
Newton method and η as in exercise 11.

Solutions are discussed on May 18th.
The programming exercise needs to be handed in by June 1st.
Contact person: Dominik Edelmann,
edelmann@na.uni-tuebingen.de, office hours Mo 14 - 16 and by arrangement per email.


