2st Exercise sheet – Numerics for instationary differential equations

Exercise 4: Show that the stability function of a Runge-Kutta method satisfies

$$R(z) = \frac{\det \left(I + z(\mathbb{1}b^T - A)\right)}{\det(I - zA)}.$$

Hint: Use (but don't prove) $det(I + wv^T) = 1 + v^T w$.

Exercise 5:

Compute the stability function R(z) of the following Runge-Kutta method (Lobatto IIIC):

0	$\frac{1}{6}$	$-\frac{1}{3}$	$\frac{1}{6}$
$\frac{1}{2}$	$\frac{1}{6}$	$\frac{5}{12}$	$-\frac{1}{12}$
1	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

Show that this method is A-stable.

Exercise 6: Consider a collocation method with symmetrically distributed nodes: $c_i = 1 - c_{s+1-i}$ for $i = 1, \ldots, s$. Prove that the stability function of this method satisfied

$$R(z) \cdot R(-z) = 1$$
 for all $z \in \mathbb{C}$ (except of the poles).

In particular, $|R(z)| \equiv 1$ on the imaginary axis i \mathbb{R} .

<u>Hints</u>: Let A and b be the coefficient matrix and the coefficient vector of the Runge–Kutta method, respectively, and $\mathbb{1} = (1, ..., 1)^T$. Show and use

$$b = Pb, \qquad \qquad A = \mathbb{1}b^T - PAP,$$

where

$$P = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & & \ddots & 0 \\ & 1 & & \\ 0 & \ddots & & 0 \\ 1 & 0 & \dots & 0 \end{pmatrix}.$$

Then, use exercise 4.

Solutions are discussed on May 4th.

Contact person: Dominik Edelmann,

edelmann@na.uni-tuebingen.de, office hours Mo 14 - 16 and by arrangement per email.