8. Exercise sheet for numerics of stationary differential equations

Exercise 20:

Assume a triangulation of a bounded domain $\Omega \subset \mathbb{R}^2$. Let *u* be a function, which is C^1 on each triangle.

Show:

$$u \in H^1(\Omega) \iff u \in C(\bar{\Omega})$$

Hint: $u \in H^1(\Omega) \iff u \in L^2(\Omega)$ and u admits weak derivatives (see ex. 18). **Exercise 21:**

- (a) Give a continuous function on [0,1], which is not an element in $H^1(0,1)$.
- (b) Let Ω a ball in \mathbb{R}^3 with center in the origin. Show: For $\alpha < 1/2$, the function $u(x) = ||x||^{-\alpha}$ is in $H^1(\Omega)$.

Exercise 22:

Let $\Omega = [a, b]$ a real interval. Show: $H^1(a, b) \subset C[a, b]$. Hint:

- (a) Show: $|v(x)| \le C ||v||_1$ for $v \in C^{\infty}[a, b]$.
- (b) Use the density of C^{∞} in H^1 with respect to the $\|\cdot\|_1$ -norm.