7. Exercise sheet for numerics of stationary differential equations

Exercise 17:

Consider the Helmholtz-equation with Neumann boundary conditions:

$$-\Delta u + u = f$$
 in Ω , $\frac{\partial u}{\partial n} = g$ on Γ . (**)

Show for $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ that the following statements are equivalent:

- (a) u is solution to (**)
- (b) It holds

$$\int_{\Omega} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + uv \right) d(x, y) = \int_{\Omega} fv \, d(x, y) + \int_{\Gamma} gv \, dv$$

for all $v \in C^1(\Omega) \cap C(\overline{\Omega})$.

(c) *u* is solution to the variational problem

$$\frac{1}{2}\int_{\Omega}\left[\left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + v^2\right]d(x,y) - \int_{\Omega}fv\,d(x,y) - \int_{\Gamma}gv\,d\sigma = \min!$$

under all $v \in C^1(\Omega) \cap C(\overline{\Omega})$.

Exercise 18:

We define: $u \in L^2(\Omega)$ admits the *weak derivative* $\partial_i u$ (for i = 1, ..., n), if $\partial_i u \in L^2(\Omega)$ and

$$(\phi, \partial_i u)_0 = -(\frac{\partial \phi}{\partial x_i}, u)_0$$
 für alle $\phi \in C_0^{\infty}(\overline{\Omega})$.

Show for bounded piecewise C^1 domains Ω :

- (a) For $u \in C^1(\overline{\Omega})$ is the classical derivative $\partial u / \partial x_i$ also a weak derviative.
- (b) For $u \in H^1(\Omega)$ are the generalized derivatives (from the lecture) also weak derivatives.

It holds (you do not need to proof that): If the weak derivatives of $u \in L^2(\Omega)$ exist, they are also generalized derivatives and therefore $u \in H^1(\Omega)$.

Exercise 19:

Let *V*, *W* be normed vector spaces and $L : V \rightarrow W$ a linear map. Show:

L continuous \iff *L* continuous in 0 \iff *L* bounded.