5. Exercise sheet for numerics of stationary differential equations

Exercise 10:

Given is the parameter-dependent differential equation

$$
y^{\prime}(t)=f(t, y(t), p)
$$

Show that

$$
P(t)=\frac{\partial}{\partial p} y\left(t \mid t_{0}, x_{0}, p\right)
$$

is the solution of the inhomogeneous, linear matrix differential equation

$$
P^{\prime}(t)=C(t) P(t)+B(t)
$$

where $C(t)=\frac{\partial f}{\partial y}\left(t, y\left(t \mid t_{0}, x_{0}, p\right), p\right)$ and $B(t)=\frac{\partial f}{\partial p}\left(t, y\left(t \mid t_{0}, x_{0}, p\right), p\right)$ with $P\left(t_{0}\right)=0$.

Exercise 11:

If one approximates in the variational problem

$$
\int_{a}^{b} f\left(t, y, y^{\prime}\right) d t=\min !
$$

the integral through the trapezoidal rule and the derivatives through a difference quotient, one gets to the following minimization problem

$$
\frac{h}{2} f\left(a, y(a), \frac{y(a+h)-y(a)}{h}\right)+h \sum_{i=1}^{n-1} f\left(t_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right)+\frac{h}{2} f\left(b, y(b), \frac{y(b)-y(b-h)}{h}\right)=\min !
$$

Show for given boundary values that the solution of this problem is the same as if one applies the midpoint rule to the Euler Lagrange equations

$$
y^{\prime}=v, \quad p^{\prime}=\frac{\partial f}{\partial y}(t, y, v), \quad 0=p-\frac{\partial f}{\partial y^{\prime}}(t, y, v) .
$$

Hint: The derivative in the midpoint rule is replaced by a difference quotient of the form

$$
y^{\prime}\left(t_{i}\right) \rightarrow \frac{y_{i+1}-y_{i-1}}{2 h}
$$

(analogous for p^{\prime}).

Exercise 12:

Formulate and prove a 2-dimensional version of the fundamental lemma of calculus of variations.

Exercise 13:

Derive the Euler Lagrange equations for the minimal surface problem

$$
\int_{\Omega} \sqrt{1+u_{x}^{2}(x, y)+u_{y}^{2}(x, y)} d(x, y)=\min !
$$

with given values on the boundary $u=g$ on $\partial \Omega$. Here Ω is a bounded domain with smooth boundary in \mathbb{R}^{2}.

Discussion of the sheet on 20.11.2023.

