4. Exercise sheet for numerics of stationary differential equations

Exercise 8:

Suppose there is given a 3-point-boundary value problem of the form

$$\begin{aligned} y' &= f(y) \\ r(y(a), y(\tau), y(b)) &= 0, \qquad a < \tau < b. \end{aligned}$$

Let y^* be a solution to the problem. Give a sufficient condition such that y^* is locally unique.

Hint: Follow the ideas from §2 from the lecture.

Exercise 9:

Formulate the multi shooting method for the 3-point-boundary value problem from exercise 8. How do the linear equation systems, that have to be solved in each Newton-step, look like?

<u>Hint</u>: Suppose that τ is a partition point.

Programming exercise 2 :

Implement the collocation method from exercise 6 (s = 1, $c_1 = 1/2$) as a multi shooting method as in exercise 7 for the boundary value problem

$$y'' + t^{-1}y' - 4t^{-2}y = 0,$$
 $y(1) = 2,$ $y(2) = 17/4.$

Divide the interval [1,2] equidistant in *m* sub-intervals $[t_j, t_{j+1}]$, $0 \le j \le m-1$. Test your program for $m = 2^i$, $1 \le i \le 6$ and determine $\max_{0 \le j \le m} |u(t_j) - y(t_j)|$, where *u* is the approximation from the collocation method to the exact solution *y*. Which convergence rate can you observe? Appropriate initial values for $y(t_j)$ – without any knowledge of the exact solution – can be obtained via linear interpolation (and for $y'(t_j)$ choose simply 0).

<u>Hint</u>: The exact solution of the boundary value problem is $y(t) = t^2 + t^{-2}$.