4. Exercise sheet for numerics of stationary differential equations

Exercise 8:

Suppose there is given a 3-point-boundary value problem of the form

$$
\begin{aligned}
& y^{\prime}=f(y) \\
& r(y(a), y(\tau), y(b))=0, \quad a<\tau<b .
\end{aligned}
$$

Let y^{\star} be a solution to the problem. Give a sufficient condition such that y^{\star} is locally unique.
Hint: Follow the ideas from $\S 2$ from the lecture.

Exercise 9:

Formulate the multi shooting method for the 3-point-boundary value problem from exercise 8 . How do the linear equation systems, that have to be solved in each Newton-step, look like?
Hint: Suppose that τ is a partition point.

Programming exercise 2 :

Implement the collocation method from exercise $6\left(s=1, c_{1}=1 / 2\right)$ as a multi shooting method as in exercise 7 for the boundary value problem

$$
y^{\prime \prime}+t^{-1} y^{\prime}-4 t^{-2} y=0, \quad y(1)=2, \quad y(2)=17 / 4 .
$$

Divide the interval $[1,2]$ equidistant in m sub-intervals $\left[t_{j}, t_{j+1}\right], 0 \leq j \leq m-1$. Test your program for $m=2^{i}, 1 \leq i \leq 6$ and determine $\max _{0 \leq j \leq m}\left|u\left(t_{j}\right)-y\left(t_{j}\right)\right|$, where u is the approximation from the collocation method to the exact solution y. Which convergence rate can you observe? Appropriate initial values for $y\left(t_{j}\right)$ - without any knowledge of the exact solution - can be obtained via linear interpolation (and for $y^{\prime}\left(t_{j}\right)$ choose simply 0).
Hint: The exact solution of the boundary value problem is $y(t)=t^{2}+t^{-2}$.

