Prof. Dr. Christian Lubich

## 13. Exercise sheet for numerics of stationary differential equations

## Exercise 36:

Consider the eigenvalue problem

$$
\begin{aligned}
-u^{\prime \prime}(x) & =\lambda u(x) \quad \text { in }(0, \pi) \\
u(0) & =u(\pi)=0
\end{aligned}
$$

Linear finite elements with an equidistant partitioning of $[0, \pi]$ in $(N+1)$ sub-intervals of the length $h$ are chosen for discretisation.
(a) Give the matrices $A$ and $M$ of the corresponding linear equation system $A \mu=\lambda M \mu$.
(b) The continuous eigenvalues and -vectors are

$$
\lambda_{m}=m^{2}, \quad u_{m}(x)=\sin (m x), \quad m=1,2, \ldots
$$

The discrete eigenvalues and -vectors are

$$
\lambda_{m, h}=\frac{6}{h^{2}} \frac{1-\cos m h}{2+\cos m h}, \quad u_{m, h}=\Pi_{h} u_{m}, \quad m=1,2, \ldots, N
$$

Here. $\Pi_{h} v=\sum_{n=1}^{N} v(n h) \varphi_{n}$ denotes the piecewise linear interpolation in the grid points with finite element basis $\left(\varphi_{n}\right)_{n=1}^{N}$. Verify this and show further the estimate

$$
\lambda_{m}-\lambda_{m, h} \leq C(m) h^{2}
$$

## Exercise 37:

Consider the initial/boundary value problem of the heat equation

$$
\begin{aligned}
\frac{\partial}{\partial t} u-\Delta u & =0 & & \text { in } \Omega \times(0, T) \\
u & =0 & & \text { on } \partial \Omega \times(0, T) \\
u & =u_{0} & & \text { fort }=0
\end{aligned}
$$

with $u_{0}: \bar{\Omega} \rightarrow \mathbb{R}$. Show:
(a) If a classical solution $u: \bar{\Omega} \times[0, T]$ exists, it is given by

$$
u(\cdot, t)=\sum_{m=1}^{\infty}\left(u_{0}, w_{m}\right) e^{-\lambda_{m} t} w_{m}
$$

where $\lambda_{m}$ and $w_{m}$ are the eigenvalues and $L_{2}(\Omega)$-orthogonal eigenvectors of the Laplaceoperators.
Hint: Use the ansatz $u(x, t)=\varphi(t) w(x)$.
(b) Derive from (a) for all $k \in \mathbb{N}$ :

$$
\left\|\frac{\partial^{k}}{\partial t^{k}} u(\cdot, t)\right\|_{0} \leq C(t, k)\left\|u_{0}\right\|_{0}
$$

What happens in the case $t \rightarrow \infty$ ?
(c) Propose a numerical method or solving this problem.

Hint: Part (c) can be substituted by visiting the lecture numerics of instationary differential equations in the summer semester 2024.

