Prof. Dr. Christian Lubich

12. Exercise sheet for numerics of stationary differential equations

Exercise 33:

Let $A=M-N$ by a decomposition of the symmetric, positive definite matrix A and assume N being also symmetric, positive definite. Show that the iteration

$$
x_{k+1}=x_{k}+M^{-1}\left(b-A x_{k}\right)
$$

converges and that the eigenvalues of the iteration matrix are real and lie between 0 and 1 .

Exercise 34:

The iteration in the two-grid method can be written in the from

$$
u_{h}^{(k+1)}=M u_{h}^{(k)}+v_{h}
$$

with $v_{h}:=(I-M) u_{h}$.
Give the matrix M explicitly for the case where one uses ν_{1} smoothing steps before and ν_{2} smoothing steps after each iterations. Further, show that the spectral radius of M only depends on the sum $\nu_{1}+\nu_{2}$ an not how many smoothing steps are done a priori and how many a posteriori.

Exercise 35:

Let H be a Hilbert space and $T: H \rightarrow H$ compact. Show that if $\operatorname{dim} H=\infty$ then $0 \in \sigma(T)$.
Hint: $\sigma(T)$ is the spectrum of a linear operator and defined via $\sigma(T):=\{\lambda \in \mathbb{C}:(T-\lambda I)$ not bijektiv $\}$.

Programming exercise 5 :

Solve the linear equation system from programming exercise 4 using a two-grid (or if you like multigrid) method with two Gauss-Seidel iterations as smoothing. Use a linear interpolation for the restriction and prolongation.

Alternatively, you can solve the problem

$$
\begin{aligned}
-\Delta u=1 & \text { in } \Omega \\
u=0 & \text { on } \Gamma
\end{aligned}
$$

on the unit square $\Omega=[0,1]^{2}$ using a two grid (or if you like multi-grid) method with two GaussSeidel iterations as smoothing. Use a linear interpolation for the restriction and prolongation. (Hint: What are the relations between P and R^{T} ?)
For the computation of the discrete Laplace operator you can use the following Matlab function and the (incomplete) script.

```
function A=stiffness_matrix(h)
% A - the stiffness-matrix for the 5-star finite differences approximation
% h - grid size
% number of nodes in one direction which are not on the boundary
% (with boundary n+2 x n+2 Grid)
n=1/h-1;
%% stiffness matrix
% help vector
e=ones(n,1);
% help matrices
D=sparse(4*diag(e));
nD=spdiags([[e 0*e e] , [\begin{array}{llll}{-1}&{0}&{1}\end{array}], n,n);
id=spdiags(e,[0], n,n);
% stiffness matrix
A=1/h^2 * (kron(id,D-nD) + kron(nD,-id));
h=1/32; % grid size
n=1/h-1;
N=n^2; % size of the linear equation system
% matrix
A=FD_SteifigkeitsMatrix(h);
% load vector
b=ones(N,1);
% solution of linear equation system
u=A\b;
%% figure without boundary values(!)
figure
surf(reshape(u,n,n))
```

Discussion of the sheet on 22.01.2024.
Hand in the programming exercise by 29.01.2024.

