10. Exercise sheet for numerics of stationary differential equations

Exercise 27:

(a) Show for the reference triangle \hat{K} with linear interpolation in the corners

$$||v - \hat{\Pi}v||_0 \le C |v|_2$$
 for all $v \in H^2(\hat{K})$.

Hint: Use

$$v(x) - v(0) = \int_0^1 \frac{d}{dt} v(tx) \, dt = Dv(x)x - \int_0^1 t \frac{d^2}{dt^2} v(tx) \, dt$$

and the same formula for $\hat{\Pi}v$.

(b) With the help of part (a) show that for linear interpolation in the corners of an arbitrary triangle K with diameter h it holds

$$||v - \Pi v||_0 \le C h^2 |v|_2$$
 for all $v \in H^2(K)$,

where C does not depend on K.

Exercise 28:

(a) Show for bilinear interpolation in the corners of the reference square \hat{K}

$$|v - \hat{\Pi}v|_1 \leq C |v|_2$$
 for all $v \in H^2(\hat{K})$.

(b) Let K be a finite element with diameter h and inner circle radius ρ , which is obtained via an affine transformation from \hat{K} . With the help of (a) show now for the interpolation error of K that it holds

$$|v - \Pi v|_1 \le C \frac{h^2}{\rho} |v|_2$$
 for all $v \in H^2(K)$,

where C does not depend on K.

Exercise 29:

Suppose the elliptic variational problem $a(u, v) = l(v) \quad \forall v \in V$ with $V \subset H^1(\Omega)$. It is approximated by a Galerkin method on the approximation space $V_h \leq V$, an approximated linear form $l_h : V_h \to \mathbb{R}$ and an approximated bilinear form $a_h : V_h \times V_h \to \mathbb{R}$. I.e.:

Determine
$$u_h \in V_h$$
 such that $a_h(u_h, v_h) = l_h(v_h) \quad \forall v_h \in V_h$.

Suppose further that the bilinear form a_h is uniformly elliptic, which means that for a $\alpha > 0$ (independent of h) it holds:

$$\alpha \|w_h\|_1^2 \le a_h(w_h, w_h) \quad \forall w_h \in V_h.$$

Show the error estimate (*Lemma of Strang*):

$$\|u - u_h\|_1 \le c \left(\inf_{v_h \in V_h} \left(\|u - v_h\|_1 + \|a(v_h, \cdot) - a_h(v_h, \cdot)\|_* \right) + \|l - l_h\|_* \right) ,$$

where the operator norm $\|\cdot\|_*$ is defined by $\|F\|_* = \sup_{0 \neq w_h \in V_h} \frac{|F(w_h)|}{\|w_h\|_1}$. Hint: Begin with the uniformly ellipticity of a_h for $w_h = u_h - v_h$.

Programming exercise 4 :

Solve with the finite elements method the problem

$$-d\Delta u + cu = f \quad \text{in} \quad \Omega,$$
$$u = 0 \quad \text{auf} \quad \partial\Omega,$$

where the domain Ω and the parameters $d > 0, c \ge 0$ are given as the following:

 Ω : Direct as a triangulation through the matrices (elements, nodes);

 $\partial \Omega$: Through the list of boundary nodes (boundary)

f: As a Matlab function (func_f.m).

Implement a function [A,M]=matrix_assembly(Elements,Nodes) for the computation of the stiffnessand mass-matrix. Use the exercises 23, 24 and 25. The vector *b* can be approximated by

$$|\boldsymbol{b}|_j = \int_{\Omega} f \phi_j \approx \int_{\Omega} I_h f \phi_j = (\boldsymbol{M} \boldsymbol{f})_j$$

An example code for handling the txt-files can be found under: https://na.uni-tuebingen.de/ ex/num3_ws2324/PA4_FEM_Bsp.zip.

(a) Solve with the help of your matrix_assembly function the linear equation system, which corresponds to the problem above and Ω being the unit circle. A reference solution (func_solution) and the inhomogeneous function (func_f) are given as a m-file.

Compute the error of the numerical solution for different grids. The triangulations for the unit circle are encoded in the txt-files

Elements_test_j.txt
$$j = 1, 2, 3, 4.$$
 Nodes_test_j.txt

(b) Compute the error in the L^2 norm and the H^1 semi-norm through:

$$\|e_h\|_{L^2(\Omega)}^2 = \|\boldsymbol{e}\|_{\boldsymbol{M}}^2 = \boldsymbol{e}^T \boldsymbol{M} \boldsymbol{e}$$
$$\|\nabla e_h\|_{L^2(\Omega)}^2 = \|\boldsymbol{e}\|_{\boldsymbol{A}}^2 = \boldsymbol{e}^T \boldsymbol{A} \boldsymbol{e}$$

and plot the errors (loglog-plot!).