10. Exercise sheet for numerics of stationary differential equations

Exercise 27:

(a) Show for the reference triangle \hat{K} with linear interpolation in the corners

$$
\|v-\hat{\Pi} v\|_{0} \leq C|v|_{2} \quad \text { for all } v \in H^{2}(\hat{K})
$$

Hint: Use

$$
v(x)-v(0)=\int_{0}^{1} \frac{d}{d t} v(t x) d t=D v(x) x-\int_{0}^{1} t \frac{d^{2}}{d t^{2}} v(t x) d t
$$

and the same formula for $\hat{\Pi} v$.
(b) With the help of part (a) show that for linear interpolation in the corners of an arbitrary triangle K with diameter h it holds

$$
\|v-\Pi v\|_{0} \leq C h^{2}|v|_{2} \quad \text { for all } v \in H^{2}(K)
$$

where C does not depend on K.

Exercise 28:

(a) Show for bilinear interpolation in the corners of the reference square \hat{K}

$$
|v-\hat{\Pi} v|_{1} \leq C|v|_{2} \quad \text { for all } v \in H^{2}(\hat{K})
$$

(b) Let K be a finite element with diameter h and inner circle radius ρ, which is obtained via an affine transformation from \hat{K}. With the help of (a) show now for the interpolation error of K that it holds

$$
|v-\Pi v|_{1} \leq C \frac{h^{2}}{\rho}|v|_{2} \quad \text { for all } v \in H^{2}(K)
$$

where C does not depend on K.

Exercise 29:

Suppose the elliptic variational problem $a(u, v)=l(v) \quad \forall v \in V$ with $V \subset H^{1}(\Omega)$. It is approximated by a Galerkin method on the approximation space $V_{h} \leq V$, an approximated linear form $l_{h}: V_{h} \rightarrow \mathbb{R}$ and an approximated bilinear form $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$. I.e.:

$$
\text { Determine } u_{h} \in V_{h} \text { such that } a_{h}\left(u_{h}, v_{h}\right)=l_{h}\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

Suppose further that the bilinear form a_{h} is uniformly elliptic, which means that for a $\alpha>0$ (independent of h) it holds:

$$
\alpha\left\|w_{h}\right\|_{1}^{2} \leq a_{h}\left(w_{h}, w_{h}\right) \quad \forall w_{h} \in V_{h}
$$

Show the error estimate (Lemma of Strang):

$$
\left\|u-u_{h}\right\|_{1} \leq c\left(\inf _{v_{h} \in V_{h}}\left(\left\|u-v_{h}\right\|_{1}+\left\|a\left(v_{h}, \cdot\right)-a_{h}\left(v_{h}, \cdot\right)\right\|_{*}\right)+\left\|l-l_{h}\right\|_{*}\right)
$$

where the operator norm $\|\cdot\|_{*}$ is defined by $\|F\|_{*}=\sup _{0 \neq w_{h} \in V_{h}} \frac{\left|F\left(w_{h}\right)\right|}{\left\|w_{h}\right\|_{1}}$. Hint: Begin with the uniformly ellipticity of a_{h} for $w_{h}=u_{h}-v_{h}$.

Programming exercise 4 :

Solve with the finite elements method the problem

$$
\begin{array}{rlll}
-d \Delta u+c u & =f & \text { in } & \Omega \\
u & =0 & \text { auf } & \partial \Omega
\end{array}
$$

where the domain Ω and the parameters $d>0, c \geq 0$ are given as the following:
Ω : Direct as a triangulation through the matrices (elements, nodes);
$\partial \Omega$: Through the list of boundary nodes (boundary)
f : As a Matlab function (func_f.m).

Implement a function [A, M]=matrix_assembly (Elements, Nodes) for the computation of the stiffnessand mass-matrix. Use the exercises 23,24 and 25 . The vector b can be approximated by

$$
\left.\boldsymbol{b}\right|_{j}=\int_{\Omega} f \phi_{j} \approx \int_{\Omega} I_{h} f \phi_{j}=(\boldsymbol{M} \boldsymbol{f})_{j}
$$

An example code for handling the txt-files can be found under: https://na.uni-tuebingen.de/ ex/num3_ws2324/PA4_FEM_Bsp.zip.
(a) Solve with the help of your matrix_assembly function the linear equation system, which corresponds to the problem above and Ω being the unit circle. A reference solution (func_solution) and the inhomogeneous function (func_f) are given as a m-file.
Compute the error of the numerical solution for different grids. The triangulations for the unit circle are encoded in the txt-files

```
Elements_test_j.txt
Nodes_test_j.txt
```

(b) Compute the error in the L^{2} norm and the H^{1} semi-norm through:

$$
\begin{aligned}
\left\|e_{h}\right\|_{L^{2}(\Omega)}^{2} & =\|\boldsymbol{e}\|_{\boldsymbol{M}}^{2}=\boldsymbol{e}^{T} \boldsymbol{M} \boldsymbol{e} \\
\left\|\nabla e_{h}\right\|_{L^{2}(\Omega)}^{2} & =\|\boldsymbol{e}\|_{\boldsymbol{A}}^{2}=\boldsymbol{e}^{T} \boldsymbol{A} \boldsymbol{e}
\end{aligned}
$$

and plot the errors (loglog-plot!).

