1. Exercise sheet for numerics of stationary differential equations

Exercise 1:

(a) Determine the solution of the 1-dimensional initial value problem

$$
y^{\prime}(t)=\lambda y(t), \quad y\left(t_{0}\right)=y_{0} \in \mathbb{R}, \quad \lambda \in \mathbb{R},
$$

for a fixed t_{0}.
(b) Use this result for the transition to higher dimensions. For this, give the resolvent $R(\cdot, \cdot)$ of the d-dimensional initial value problem

$$
\begin{equation*}
y^{\prime}(t)=A y(t), \quad y\left(t_{0}\right)=y_{0} \in \mathbb{R}^{d}, \quad A \in \mathbb{R}^{d \times d}, \tag{*}
\end{equation*}
$$

for a fixed t_{0} and check your result by inserting it in the differential equation $(*)$.
(c) Can these considerations also be applied to the case of a non-constant $A(t) \in \mathbb{R}^{d \times d}$?

Exercise 2:

Let $R(\cdot, \cdot)$ be the resolvent of the linear differential equation $\tilde{y}^{\prime}(t)=C(t) \tilde{y}(t)$, with $C(t) \in \mathbb{R}^{d \times d}$. Show:
(a) For fixed $t_{0}, R\left(\cdot, t_{0}\right)$ is the solution of the problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t} R\left(t, t_{0}\right)=C(t) R\left(t, t_{0}\right), \quad R\left(t_{0}, t_{0}\right)=I
$$

(b) The solution of the inhomogeneous initial value problem

$$
y^{\prime}(t)=C(t) y(t)+q(t), \quad y\left(t_{0}\right)=y_{0} \in \mathbb{R}^{d}
$$

is given by

$$
y(t)=R\left(t, t_{0}\right) y_{0}+\int_{t_{0}}^{t} R(t, s) q(s) d s
$$

Discussion of the sheet on $\mathbf{2 3 . 1 0 . 2 0 2 3}$.

Please register in the URM system for the exercises!

