Universität Tübingen Mathematisches Institut Prof. Dr. Christian Lubich

8. Übungsblatt zur Numerik stationärer Differentialgleichungen

Aufgabe 19:

Gegeben sei die Helmholtz-Gleichung mit Neumann-Randbedingungen:

$$-\Delta u + u = f$$
 in Ω , $\frac{\partial u}{\partial n} = g$ auf Γ . $(**)$

Zeigen Sie für $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, dass folgende Aussagen äquivalent sind:

- (a) u ist Lösung von (**)
- (b) Es gilt

$$\int_{\Omega} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + uv \right) d(x,y) = \int_{\Omega} f v \ d(x,y) + \int_{\Gamma} g v \ d\sigma$$

für alle $v \in C^1(\Omega) \cap C(\bar{\Omega})$.

(c) u ist Lösung des Variationsproblems

$$\frac{1}{2} \int_{\Omega} \left[\left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + v^2 \right] d(x,y) - \int_{\Omega} f v \ d(x,y) - \int_{\Gamma} g v \ d\sigma = \min!$$

unter allen $v \in C^1(\Omega) \cap C(\bar{\Omega})$.

Aufgabe 20:

Gegeben sei die Poissongleichung mit gemischten Randbedingungen:

$$-\Delta u = 0$$
 in Ω , $u = 0$ auf Γ_0 , $\frac{\partial u}{\partial n} = g$ auf $\Gamma \setminus \Gamma_0$.

Geben Sie – analog zur vorherigen Aufgabe – das zugehörige Variationsproblem an und zeigen Sie die Äquivalenz der Aussagen.

Aufgabe 21:

Man definiert: $u \in L^2(\Omega)$ hat die schwache Ableitung $\partial_i u$ (für i = 1, ..., n), falls $\partial_i u \in L^2(\Omega)$ und

$$(\phi, \partial_i u)_0 = -(\frac{\partial \phi}{\partial x_i}, u)_0$$
 für alle $\phi \in C_0^{\infty}(\overline{\Omega})$.

Zeigen Sie für beschränkte stückweise C^1 -Gebiete Ω :

- (a) Für $u \in C^1(\overline{\Omega})$ ist die klassische Ableitung $\partial u/\partial x_i$ eine schwache Ableitung.
- (b) Für $u \in H^1(\Omega)$ sind die verallgemeinerten Ableitungen (im Sinne der Vorlesung) schwache Ableitungen.

Es gilt (ohne, dass Sie es zeigen müssen): Falls die schwachen Ableitungen von $u \in L^2(\Omega)$ existieren, so sind sie verallgemeinerte Ableitungen und daher auch $u \in H^1(\Omega)$.

Aufgabe 22:

Es sei eine Triangulierung eines beschränkten Gebietes $\Omega \subset \mathbb{R}^2$ und eine Funktion u, die auf jedem Dreieck C^1 ist, gegeben.

Zeigen Sie:

$$u \in H^1(\Omega) \iff u \in C(\bar{\Omega})$$

Hinweis: $u \in H^1(\Omega) \iff u \in L^2(\Omega)$ und u besitzt schwache Ableitungen (vgl. Aufg. 21).

Besprechung in der Übung am 09.12.2013.

Ansprechpartner: Bernd Brumm,

brumm@na.uni-tuebingen.de, Sprechstunde Fr 13 - 17 nach Anmeldung