4. Übungsblatt zu Algorithmen der Numerischen Mathematik

<u>Aufgabe 11:</u> Zeigen Sie: Ist B eine normale und A eine beliebige $n \times n$ Matrix, dann gibt es zu jedem Eigenwert λ von A einen Eigenwert μ von B mit

$$|\lambda - \mu| \le ||A - B||_2$$

Hinweis: Zeigen Sie zunächst: Ist λ kein Eigenwert von B, so gilt:

$$||(\lambda I - B)^{-1}||_2 = \frac{1}{\min_{\mu \in \lambda(B)} |\lambda - \mu|}.$$

Betrachten Sie dann für den zu λ gehörenden Eigenvektor x von A den Vektor (A - B)x.

Aufgabe 12: (Kondition)

- (a) Sei λ eine einfache Nullstelle des charakterisitischen Polynoms von $A \in \mathbb{R}^{n \times n}$. Zeigen Sie, dass die Konditionszahl des Eigenwerts λ von A existiert (d.h. $u^*v \neq 0$) und invariant ist unter unitären Ähnlichkeitstransformationen ist (d.h., dass der Eigenwert λ der Matrix U^*AU mit unitärer Matrix U dieselbe Konditionszahl hat).
- (b) Sei $A \in \mathbb{R}^{n \times n}$ diagonalisierbar mit paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_n$ und zugehörigen Eigenvektoren v_1, \ldots, v_n und Links-Eigenvektoren u_1^*, \ldots, u_n^* . Sei weiters $C \in \mathbb{R}^{n \times n}$ beliebig.

Zeigen Sie: Die Matrix $A + \varepsilon C$ hat die Eigenvektoren

$$v_j(\varepsilon) = v_j + \varepsilon \sum_{i=1, i \neq j}^n \frac{1}{\lambda_j - \lambda_i} \frac{u_i^* C v_j}{u_i^* v_i} v_i + O(\varepsilon^2)$$

<u>Hinweis</u>: Drücken Sie $v'_j(0)$ als Linearkombination der v_i aus. Benutzen Sie zur Bestimmung der Koeffizienten von v_i $(i \neq j)$, dass $u_i^* v_j = 0$ für $i \neq j$ (warum?). Betrachten Sie ein geeignet skaliertes $v_j(\varepsilon)$, um auch den Koeffizienten von v_j wie behauptet zu bekommen.

Aufgabe 13: Berechnen Sie die Eigenwerte der $n \times n$ Matrix $\tilde{A} = A + \varepsilon C$ mit

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \dots & \vdots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}, \quad C = \hat{e}_n \hat{e}_1^T.$$

Was ergibt sich für n = 8 und $\varepsilon = 10^{-8}$?

Aufgabe 14: (Satz von Gerschgorin)

(a) Zeigen Sie: Die Vereinigung aller Kreisscheiben

$$K_i = \{ \mu \in \mathbb{C} : |\mu - a_{i,i}| \le \sum_{\substack{k=1 \ k \ne i}}^n |a_{i,k}| \}$$

enthält alle Eigenwerte der $n \times n$ Matrix $A = (a_{i,j})$.

<u>Hinweis:</u> Betrachten Sie die Gleichung $Ax = \lambda x$ komponentenweise.

(b) Zeichnen Sie alle Gerschgorin-Kreise der Matrix

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 6 & 4 \\ 1 & 2 & 10 \end{pmatrix}.$$

Überlegen Sie sich, wie Sie die Menge der möglichen Eigenwerte weiter einschränken können.