Universität Tübingen Mathematisches Institut Prof. Dr. Christian Lubich

1. Übungsblatt zur Numerik

Aufgabe 1: (Landau-Notation)

Für (reelle) Funktionen f und g schreiben wir $f = \mathcal{O}(g)$ für $x \to a$, $(a \in \mathbb{R} \cup \{\pm \infty\})$, falls es eine Umgebung U von a und eine Konstante $C \in \mathbb{R}$ gibt, so dass

$$|f(x)| \le C|g(x)|$$
 für alle $x \in U$

(oder etwas präziser, falls $\limsup_{x\to a} \frac{|f(x)|}{|g(x)|} < \infty$). Anschaulich bedeutet dies, dass die Funktion f in einer Umgebung von a nicht schneller wächst als die Funktion g.

Gegeben seien die Funktionen

$$x^3$$
, $\log(x)$, 2^x , x^2 , $x^3 + 1000x^2$, e^x .

Vergleichen Sie das Wachstum dieser Funktionen für $x \to \infty$ und $x \to 0$ mit Hilfe der oben beschriebenen \mathcal{O} -Notation.

Programmieraufgabe 1: Schreiben Sie ein Programm, das die Näherungswerte $\sum_{k=0}^{n} \frac{x^k}{k!} \approx e^x$ berechnet und plottet für x = -5, 5 und n = 1, 2, ..., 30. Die Berechnung soll auf folgende drei Arten erfolgen:

- (a) mittels obiger Formel
- (b) mit der Umformung $e^{-5.5} = 1/e^{5.5}$ und obiger Formel
- (c) mit der Umformung $e^{-5.5} = (e^{-0.5})^{11}$ und obiger Formel

Erklären Sie die beobachteten Effekte. Verwenden Sie für die Darstellung der Zahlenwerte in erhöhter Genauigkeit den Befehl format long. Welches zusätzliche Phänomen tritt für x = -20 auf? Hinweis: Diese Programmieraufgabe ist fakultativ.

Besprechung in den Übungen am 19.10.2012

Die Übungen finden freitags von 8-10, 12-14 und 14-16 Uhr in N8 statt. Die Einteilung der Übungsgruppen finden Sie auf der Internetseite: http://na.uni-tuebingen.de/ex/dwnum_ws12/.