Universität Tübingen Mathematisches Institut Prof. Dr. Christian Lubich

14. Übungsblatt zur Numerik

Aufgabe 50: Weisen Sie nach, dass das klassische Runge-Kutta-Verfahren die Ordnung 4 hat. (Mit Bäumen oder, wenn Sie viel Zeit und Geduld haben, ohne Bäume.)

Aufgabe 51: Ein Runge-Kutta-Verfahren der Ordnung q liefert Näherungswerte y_n und zugehörige Funktionswerte $f(t_n, y_n)$. Um eine Lösung auf dem gesamten Intervall zu bestimmen, kann man auf dem Intervall $[t_n, t_{n+1}]$ die Lösung durch das Hermite-Polynom mit Randwerten y_n, y_{n+1} und Ableitungswerten $f(t_n, y_n), f(t_{n+1}, y_{n+1})$ approximieren.

Für welche Ordnung q ist der Fehler dieser Näherungslösung auf dem gesamten Integrationsintervall durch $\mathcal{O}(h^q)$ beschränkt?

Aufgabe 52: Auf das Anfangswertproblem

$$y' = \lambda y \,, \quad y(0) = y_0$$

werde ein explizites Runge-Kutta-Verfahren der Ordnung p mit s Stufen angewandt. Zeigen Sie:

- (a) $y_1 = P(h\lambda)y_0$, wobei P(z) ein Polynom vom Grad s ist.
- (b) Falls p = s, so gilt

$$P(z) = 1 + z + \frac{z^2}{2!} + \ldots + \frac{z^p}{p!}.$$

Aufgabe 53: Zeigen Sie: Ein Runge-Kutta-Verfahren mit

$$\sum_{i=1}^{s} a_{ij} = c_i, \quad i = 1, \dots, s$$
 (1)

angewandt auf die Differentialgleichung y' = f(t, y) ist äquivalent zu einem Runge-Kutta-Verfahren angewandt auf das autonome System z' = F(z) mit

$$z = \left[egin{array}{c} t \\ y \end{array}
ight], \quad F(z) = \left[egin{array}{c} 1 \\ f(t,y) \end{array}
ight].$$

Diskutieren Sie zudem die Voraussetzung (1), indem Sie die innere Stufe Y_i als Näherung von $y(t_0 + c_i h)$ interpretieren.

Besprechung in den Übungen am 02.02.2011. Klausurtermin: Montag, der 31.01.2011, von 16–18 Uhr in N5, N6, wobei die Übungsgruppen 1-3 in N5 und die Gruppen 4-10 in N6 schreiben.